• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bluetooth Based Bird Detection System

Sai Charan Reddy, Muppireddy, Namuduri, Veera Venkata Satyanarayana Murthy January 2023 (has links)
Context: Windmills became one of main sources of energy. Sincethey are placed in open areas, there are many chances that birds mayenter the wind farms and get killed or damaged. Some wind farms usepulse radar systems for saving the birds from windmills. In this pulseradar technology, the turbines are turned off automatically when a birdis detected. Another technology is ultrasonic "boom boxes", which areattached to turbines and produce high-frequency noises continuouslyto repel birds. The system we are going to propose detects the birdsentering the farm using Bluetooth technology and alerts the windmill farm operator. Using Bluetooth technology can be power efficient, ac-curate, and mainly useful for avifauna method of protection. Objectives: The main objective of the Bluetooth bird detection sys-tem is to make distance estimation possible with the help of signal strength that is measured between two Bluetooth devices where oneis placed at the wind farm and another on bird. Methods: Bird detection and distance measurement is done using a BGX13P Bluetooth transmitter and receiver. According to the distance to the bird, further steps can be taken to protect it. Simplicity Studio application is used to take the readings of the Bluetooth signalstrength of the transmitter and receiver. Results: As a result, the birds are detected at two distances from awindmill, the first distance is 250 m and the second is 175 m from thewindmill. The windmill operator is alerted when the bird is detectedat either of these distances. Conclusion: A bird detection system is built with the help of Blue-tooth technology. This system helps saving the birds from collisions with windmills. However, there is a need for further quantitative andqualitative validation of the models in full-scale industry trials.
2

Arduino-Based Radio Technology System for Bird Protection : Wind Farm Application Approach

Gullipalli, Raashita, Golla, Kiran Kumar January 2020 (has links)
No description available.
3

A Comparison of Image Processing Techniques for Bird Detection

Reyes, Elsa 01 June 2014 (has links)
Orchard fruits and vegetable crops are vulnerable to wild birds and animals. These wild birds and animals can cause critical damage to the produce. Traditional methods of scaring away birds such as scarecrows are not long-term solutions but short-term solutions. This is a huge problem especially near areas like San Luis Obispo where there are vineyards. Bird damage can be as high as 50% for grapes being grown in vineyards. The total estimated revenue lost annually in the 10 counties in California due to bird and rodent damage to 22 selected crops ranged from $168 million to $504 million (in 2009 dollars). A more effective and permanent system needs to be put into place. Monitoring systems in agricultural settings could potentially provide a lot of data for image processing. Most current monitoring systems however don’t focus on image processing but instead really heavily on sensors. Just having sensors for certain systems work, but for birds, monitoring it is not an option because they are not domesticated like pigs, cows etc. in which most these agricultural monitoring systems work on. Birds can fly in and out of the area whereas domesticated animals can be confined to certain physical regions. The most crucial step in a smart scarecrow system would be how a threat would v be detected. Image processing methods can be effectively applied to detecting items in video footage. This paper will focus on bird detection and will analyze motion detection with image subtraction, bird detection with template matching, and bird detection with the Viola-Jones Algorithm. Of the methods considered, bird detection with the Viola-Jones Algorithm had the highest accuracy (87%) with a somewhat low false positive rate. This image processing step would ideally be incorporated with hardware (such as a microcontroller or FPGA, sensors, a camera etc.) to form a smart scarecrow system.
4

Bird Detection System : Based on Vision / Vision Based Bird Detection System

Notla, Preetham, Ganta, Saaketh Reddy, Jyothula, Sandeep Kumar January 2022 (has links)
Context : Air being the free source is used in different ways commercially. In earlier days windmills generate power, water, and electricity. The excessive establishment of windmills for commercial purposes affected avifauna. Most of the birds lost their lives due to collisions with windmills. Turbines used to generate power near airports are also one of the causes for the extinction of birdlife. According to a survey in 2011 in Canada a total of 23,300 bird deaths were caused by wind turbines and also it is estimated that the number of deaths would increase to 2,33,000 in the following 10-15 years. Objectives : The main objective of this thesis is to find a suitable software solution to detect the birds on a series of grayscale images in real-time and in minimum full HD resolution with at least a 15 FPS rate. User-Driven Design Methodology is used for developing, tools are Python and Open-CV. Methods : In this research, a system is designed to detect the bird in an HD Video. Possible methods that can be considered are convolutional neural networks (CNN), vision based detection with background subtraction, contour detection and confusion matrix classification. These methods detect birds in raw images and with help of a classifier make it possible to see the bird in desired pixels with full resolution. We will investigate a bird classification method consisting of two steps, background subtraction, and then object classification. Background subtraction is a fundamental method to extract moving objects from a fixed background. For classification, we will use the YOLO v3 model version for object classification. Results : The project is expected to result in a system design and prototype for the bird identification on a grayscale video stream in at least full HD resolution in a minimum of 15 FPS. The bird should be distinguished from other moving objects like wind turbine blades, trees, or clouds. The proposed solution should identify up to 5 birds simultaneously. Conclusion : After completing each step and arriving at the classification, the methods we have tried, such as Haar Cascades and mobile-net SSD, were not providing us with the desired results. So we opted to use YOLO v3, which had the best accuracy in classifying different objects. By using the YOLO v3 classifier, we have detected the bird with 95% accuracy, blades with 90% accuracy, clouds with 80% accuracy, trees with 70% accuracy. Moreover, we conclude that there is a need for further empirical validation of the models in full-scale industry trials.

Page generated in 0.1051 seconds