• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DESIGN AND SYNTHESIS OF POTENT HIV-1 PROTEASE INHIBITORS AND ENANTIOSELECTIVE SYNTHESIS OF ANTIDIABETIC AGENT, CARAMBOLAFLAVONE

William L. Robinson (12211523) 17 May 2024 (has links)
HIV-1 protease inhibitor drugs are important components of current antiretroviral therapy (cART). The cART treatment regimens dramatically improved life expectancy and mortality of patients with HIV-1 infection and AIDS. However, new and improved protease inhibitor drugs are essential for future treatment options. To this end, syntheses of optically active (3a<i>S</i>,4<i>S</i>,7a<i>R</i>)-hexahydro-4<i>H</i>-furo[2,3-<i>b</i>]pyran-4-ol, (3a<i>R</i>,4<i>R</i>,7a<i>S</i>)-hexahydro-4<i>H</i>-furo[2,3-b]pyran-4-ol, and (3<i>R</i>,3a<i>S</i>,6a<i>R</i>)-hexahydrofuro[2,3-6]furan-3-ol have been accomplished. These stereochemically defined heterocyclic derivatives are important high-affinity P2 ligands for a variety of highly potent HIV-1 protease inhibitors. The key steps for the synthesis hexehydrofuropyranol involve an efficient Paternò-Büchi [2+2] photocycloaddition, catalytic hydrogenation, acid-catalyzed cyclization to form the racemic ligand alcohol, and enzymatic resolution with immobilized Amano Lipase PS-30. Optically active ligand alcohols were obtained with high enantiomeric purity. Enantiomer (-)-ligand alcohol has been converted to potent HIV-1 protease inhibitors. <div><br></div><div>(3<i>R</i>,3a<i>S</i>,6a<i>R</i>)-Hexahydrofuro[2,3-<i>b</i>]furan-3-ol(<i>bis</i>-tetrahydrofuran) is a key subunit of darunavir, an FDA approved HIV-1 protease inhibitor drug which is widely used for the treatment of HIV/AIDS patients. This stereochemically defined bicyclic heterocycle is also embedded in a variety of highly potent HIV-1 protease inhibitors. The synthesis of optically active <i>bis</i>-tetrahydrofuran was achieved in optically pure form utilizing commercially available and inexpensive 1,2-<i>O</i>-isopropylidene-α-D-xylofuranose or 1,2-O-isopropylidene-α-D-glucofuranose as the starting material. The key steps involve a highly stereoselective substrate-controlled hydrogenation of ethyl 2-(dihydrofuran-3(2H)-ylidene)acetate, a Lewis acid-catalyzed anomeric reduction of a 1,2-<i>O</i>-isopropylidene-protected glycofuranoside, and a Baeyer-Villiger oxidation of a tetrahydrofuranyl-2-aldehyde derivative. Optically active (3<i>R</i>,3a<i>S</i>,6a<i>R</i>)-hexahydrofuro[2,3-<i>b</i>]furan-3-ol ligand was converted to darunavir efficiently. Furthermore, both furopyranol and bis-tetrahydrofuran ligand alcohols have been converted into a variety of potent HIV-1 protease inhibitors including inhibitors containing P2'-boronic acid ligands.<br></div><div><br></div><div>Diabetes mellitus is a chronic, progressive metabolic disorder that seriously threatens human health worldwide, particularly in developing countries. The prevalence of diabetes has been increasing steadily, especially in developing countries. Carambolaflavone A is a natural flavonoid isolated from the leaves of starfruit tree, <i>Averrhoacarambola</i>, in 2005. Carambolaflavone A possesses a <i>C</i>-aryl glycosidic linkage. Carambolaflavone A exhibited significant antihyperglycemic properties. More detailed biological studies reveal that it can lower acute blood glucose. The biology and chemistry of carambolaflavone A attracted our interest in synthesis and further design of interesting structural variants. A convergent total synthesis of carambolaflavone A has been accomplished. The synthesis highlights a bismuth triflate-catalyzed stereoselective C-aryl glycosylation of flavan and an appropriately protected D-fucose derivative as the key step. The glycosylation partners were synthesized from commercially available (±)-naringenin and D-(+)-galactose, respectively. An oxidative bromination and elimination reaction sequence was utilized to construct the flavone. The natural product is obtained in 10 steps (longest linear sequence) from D-(+)-galactose.<br></div>

Page generated in 0.038 seconds