Spelling suggestions: "subject:"bitstreams relocation""
1 |
Accelerated Frame Data Relocation on Xilinx Field Programmable Gate ArrayKallam, Ramachandra 01 May 2010 (has links)
Emerging reconfiguration techniques that include partial dynamic reconfiguration and partial bitstream relocation have been addressed in the past in order to expose the flexibility of field programmable gate array at runtime. Partial bitstream relocation is a technique used to target a partial bitstream of a partial reconfigurable region (PRR) onto other identical reconfigurable regions inside an FPGA, while partial dynamic reconfiguration is used to target a single reconfigurable region. Prior works in this domain aim to minimize "relocation time" with the help of on-chip or on-line processing. In this thesis, a novel PRR-PRR relocation algorithm is proposed and implemented both in software and hardware. Dedicated hardware architecture, called the accelerated relocation circuit (ARC), is designed and presented for fast relocation. An analytical model is also proposed to evaluate the performance of the PRR-PRR relocation algorithm and highlight the speed-up obtained by the proposed hardware implementation. ARC has been tested on two categories of designs: dynamically scalable systolic array designs and fault tolerant designs. It has been compared against the software implementation of the algorithm, BiRF, hardware architecture for bitstream relocation, and a software solution for bitstream relocation. An average speed-up of 153x for ARC over BiRF is observed, with the additional advantage of not storing any bitstreams, thus saving invaluable block random access memory (BRAMs). Accuracy of proposed analytical model was found to be more than 95% for all the test cases.
|
2 |
Improved Framework for Fast and Efficient Memory-based Frame Data Reconfiguration for Multi-row Spanning Designs on Field Programmable Gate ArraysSreeram, Rohan 01 May 2010 (has links)
Reconfigurable computing is an evolving paradigm in computer architecture where the ability to load different designs onto a field programmable gate array (FPGA) at execution time has proven useful in adapting FPGA prototypes to a wide range of applications. Reconfiguration techniques can be primarily categorized as Partial Dynamic Reconfiguration (PDR) and Partial Bitstream Relocation (PBR). PDR involves reconfiguring a single Partial Reconfiguration Region (PRR) with a partial bitstream, while PBR is targeted at reconfiguring multiple PRRs on the FPGA with a partial bitstream. Previous techniques have primarily focused on using either slower off-chip memory or on-chip memory-based solutions to store the partial bitstream, and then reconfigure a PRR on the FPGA. Another technique called Accelerated Relocation Circuit (ARC) provides a more efficient method where a PRR (active bitstream) is used to relocate to other PRRs on the fly using minimal on-chip memory. This thesis proposes a novel technique for Memory-based Frame Data Reconfiguration (M-FDR) of multi-row PRRs. ARC hardware was re-architected to provide an improved frame data reconfiguration framework, called Accelerated Memory-based Reconfiguration Circuit (AMRC) for use in MBR scenarios. A performance prediction model is also proposed that confirms the speedup achieved by AMRC, in comparison to ARC and earlier methods. This technique was found to be 26.6% faster than ARC in PRR-PRR relocation. In comparison to other relocation techniques like Bit Relocation Filter (BiRF), AMRC provides a speedup of 231x. The AMRC method was also able to dynamically parallelize multi-row designs with an average context switching time of 0.37 ms.
|
3 |
Towards highly flexible hardware architectures for high-speed data processing : a 100 Gbps network case study / Vers des architectures matérielles hautement flexibles pour le traitement des données à très haut débit : cas d'étude sur les réseaux à 100 GbpsLalevée, André 28 November 2017 (has links)
L’augmentation de la taille des réseaux actuels ainsi que de la diversité des applications qui les utilisent font que les architectures de calcul traditionnelles deviennent limitées. En effet, les architectures purement logicielles ne permettent pas de tenir les débits en jeu, tandis que celles purement matérielles n’offrent pas assez de flexibilité pour répondre à la diversité des applications. Ainsi, l’utilisation de solutions de type matériel programmable, en particulier les Field Programmable Gate Arrays (FPGAs), a été envisagée. En effet, ces architectures sont souvent considérées comme un bon compromis entre performances et flexibilité, notamment grâce à la technique de Reconfiguration Dynamique Partielle (RDP), qui permet de modifier le comportement d’une partie du circuit pendant l’exécution. Cependant, cette technique peut présenter des inconvénients lorsqu’elle est utilisée de manière intensive, en particulier au niveau du stockage des fichiers de configuration, appelés bitstreams. Pour palier ce problème, il est possible d’utiliser la relocation de bitstreams, permettant de réduire le nombre de fichiers de configuration. Cependant cette technique est fastidieuse et exige des connaissances pointues dans les FPGAs. Un flot de conception entièrement automatisé a donc été développé dans le but de simplifier son utilisation.Pour permettre une flexibilité sur l’enchaînement des traitements effectués, une architecture de communication flexible supportant des hauts débits est également nécessaire. Ainsi, l’étude de Network-on-Chips dédiés aux circuits reconfigurables et au traitements réseaux à haut débit.Enfin, un cas d’étude a été mené pour valider notre approche. / The increase in both size and diversity of applications regarding modern networks is making traditional computing architectures limited. Indeed, purely software architectures can not sustain typical throughputs, while purely hardware ones severely lack the flexibility needed to adapt to the diversity of applications. Thus, the investigation of programmable hardware, such as Field Programmable Gate Arrays (FPGAs), has been done. These architectures are indeed usually considered as a good tradeoff between performance and flexibility, mainly thanks to the Dynamic Partial Reconfiguration (DPR), which allows to reconfigure a part of the design during run-time.However, this technique can have several drawbacks, especially regarding the storing of the configuration files, called bitstreams. To solve this issue, bitstream relocation can be deployed, which allows to decrease the number of configuration files required. However, this technique is long, error-prone, and requires specific knowledge inFPGAs. A fully automated design flow has been developped to ease the use of this technique. In order to provide flexibility regarding the sequence of treatments to be done on our architecture, a flexible and high-throughput communication structure is required. Thus, a Network-on-Chips study and characterization has been done accordingly to network processing and bitstream relocation properties. Finally, a case study has been developed in order to validate our approach.
|
Page generated in 0.1167 seconds