• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Divisibility Properties On Boolean Functions Using The Numerical Normal Form

Gologlu, Faruk 01 September 2004 (has links) (PDF)
A Boolean function can be represented in several different forms. These different representation have advantages and disadvantages of their own. The Algebraic Normal Form, truth table, and Walsh spectrum representations are widely studied in literature. In 1999, Claude Carlet and Phillippe Guillot introduced the Numerical Normal Form. NumericalNormal Form(NNF) of a Boolean function is similar to Algebraic Normal Form, with integer coefficients instead of coefficients from the two element field. Using NNF representation, just like the Walsh spectrum, characterization of several cryptographically important functions, such as resilient and bent functions, is possible. In 2002, Carlet had shown several divisibility results concerning resilient and correlation-immune functions using NNF. With these divisibility results, Carlet is able to give bounds concerning nonlinearity of resilient and correlation immune functions. In this thesis, following Carlet and Guillot, we introduce the Numerical Normal Form and derive the pairwise relations between the mentioned representations. Characterization of Boolean, resilient and bent functions using NNF is also given. We then review the divisibility results of Carlet, which will be linked to some results on the nonlinearity of resilient and correlation immune functions. We show the M&ouml / bius inversion properties of NNF of a Boolean function, using Gian-Carlo Rota&rsquo / s work as a guide. Finally, using a lot of the mentioned results, we prove a necessary condition on theWalsh spectrum of Boolean functions with given degree.

Page generated in 0.0597 seconds