• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelos Beta-Binomial/Poisson-Gama para contagens bivariadas repetidas / Beta-binomial/gamma-Poisson regression models for repeated bivariate counts

Lora, Mayra Ivanoff 01 December 2008 (has links)
Em Lora e Singer (Statistics in Medicine, 2008), propusemos um modelo Beta- Binomial/Poisson p-variado para análise dos dados provenientes de um estudo que consistiu em contar o número de tentativas e acertos de um exercício manual com duração de um minuto realizado por doentes de Parkinson, antes e depois de um treinamento. O objetivo era verificar se o treinamento aumentava o número de tentativas e a porcentagem de acerto, o que destaca o aspecto bivariado do problema. Esse modelo leva tais características em consideração, usa uma distribuição adequada para dados de contagem e ainda acomoda a sobredispersão presente na contagem dos acertos. Como generalização, inicialmente, propomos um modelo Beta-Binomial/Poisson-Gama que acomoda sobredispersão também para as contagens dos totais de tentativas, além incluir covariâncias possivelmente diferentes entre as contagens em diversos instantes de avaliação. Neste novo modelo, introduzimos um parâmetro que relaciona o total de tentativas com a probabilidade de acerto, tornando-o ainda mais geral. Obtemos estimadores de máxima verossimilhança dos parâmetros utilizando um algoritmo de Newton-Raphson. Consideramos um outro conjunto de dados provenientes do mesmo estudo para ilustração da metodologia proposta. / In Lora and Singer (Statistics in Medicine, 2008), we proposed a Beta-Binomial/Poisson p-variate model to analyze data from a study which consists in counting the number of trials and successes of a manual exercise in one minute periods, done by Parkinsons disease patients, before and after a training. The purpose was to verify if the training improves the number of trials and the percentage of success, which emphasizes the bivariate aspect of the problem. This model considers these characteristics, uses an adequate distribution to count data and settles the overdispersion suggested in the number os successes. As a generalization, initially, we propose a Beta-Binomial/Poisson-Gama model which also settles the overdispersion suggested by the total number of trials, besides includes possible different covariances between total trial counts in different evaluation instants. In this new model, we introduce a parameter that links the total trials with the success probability, making it even more general. We obtain maximum likelihood estimators for the parameters using an Newton-Raphson algorithm. We consider another data from the same study to illustrate the proposal methodology.
2

Modelos de regressão beta-binomial/poisson para contagens bivariadas / Beta-binomial/Poisson regression models for repeated bivariate counts

Lora, Mayra Ivanoff 01 April 2004 (has links)
Propomos um modelo Beta-Binomial/Poisson para dados provenientes de um estudo com doentes de Parkinson, que consistiu em contar durante um minuto quantas tarefas foram realizadas e destas, quantas de maneira correta, antes e depois de um treinamento. O objetivo era verificar se o treinamento aumentava o número de tentativas e a porcentagem de acerto, o que destaca o aspecto bivariado do problema. Esse modelo considera tal aspecto, usa uma distribuição mais adequada a dados de contagem e ainda suporta a sobredispersão presente nos dados. Obtemos estimadores de máxima verossimilhança dos parâmetros utilizando um algoritmo de Newton-Raphson. Ilustramos a aplicação da metodologia desenvolvida aos dados do estudo. / We propose a Beta-Binomial/Poisson model to the data from a study with Parkinson disease patients, which consisted in counting for one minute how many trials were attempted and how many of them were successful, before and after a training period. The main goal was to check if training increased the number of trials and success probability, which emphasizes the bivariate aspect of the problem. This model takes this aspect into account, uses a distribution which is usually more adequate to count data and supports the overdispersion present in the data. We obtain the maximum likelihood estimators using a Newton-Raphson algorithm. For illustration, the methodology is applied to the data from study.
3

Modelos de regressão beta-binomial/poisson para contagens bivariadas / Beta-binomial/Poisson regression models for repeated bivariate counts

Mayra Ivanoff Lora 01 April 2004 (has links)
Propomos um modelo Beta-Binomial/Poisson para dados provenientes de um estudo com doentes de Parkinson, que consistiu em contar durante um minuto quantas tarefas foram realizadas e destas, quantas de maneira correta, antes e depois de um treinamento. O objetivo era verificar se o treinamento aumentava o número de tentativas e a porcentagem de acerto, o que destaca o aspecto bivariado do problema. Esse modelo considera tal aspecto, usa uma distribuição mais adequada a dados de contagem e ainda suporta a sobredispersão presente nos dados. Obtemos estimadores de máxima verossimilhança dos parâmetros utilizando um algoritmo de Newton-Raphson. Ilustramos a aplicação da metodologia desenvolvida aos dados do estudo. / We propose a Beta-Binomial/Poisson model to the data from a study with Parkinson disease patients, which consisted in counting for one minute how many trials were attempted and how many of them were successful, before and after a training period. The main goal was to check if training increased the number of trials and success probability, which emphasizes the bivariate aspect of the problem. This model takes this aspect into account, uses a distribution which is usually more adequate to count data and supports the overdispersion present in the data. We obtain the maximum likelihood estimators using a Newton-Raphson algorithm. For illustration, the methodology is applied to the data from study.
4

Modelos Beta-Binomial/Poisson-Gama para contagens bivariadas repetidas / Beta-binomial/gamma-Poisson regression models for repeated bivariate counts

Mayra Ivanoff Lora 01 December 2008 (has links)
Em Lora e Singer (Statistics in Medicine, 2008), propusemos um modelo Beta- Binomial/Poisson p-variado para análise dos dados provenientes de um estudo que consistiu em contar o número de tentativas e acertos de um exercício manual com duração de um minuto realizado por doentes de Parkinson, antes e depois de um treinamento. O objetivo era verificar se o treinamento aumentava o número de tentativas e a porcentagem de acerto, o que destaca o aspecto bivariado do problema. Esse modelo leva tais características em consideração, usa uma distribuição adequada para dados de contagem e ainda acomoda a sobredispersão presente na contagem dos acertos. Como generalização, inicialmente, propomos um modelo Beta-Binomial/Poisson-Gama que acomoda sobredispersão também para as contagens dos totais de tentativas, além incluir covariâncias possivelmente diferentes entre as contagens em diversos instantes de avaliação. Neste novo modelo, introduzimos um parâmetro que relaciona o total de tentativas com a probabilidade de acerto, tornando-o ainda mais geral. Obtemos estimadores de máxima verossimilhança dos parâmetros utilizando um algoritmo de Newton-Raphson. Consideramos um outro conjunto de dados provenientes do mesmo estudo para ilustração da metodologia proposta. / In Lora and Singer (Statistics in Medicine, 2008), we proposed a Beta-Binomial/Poisson p-variate model to analyze data from a study which consists in counting the number of trials and successes of a manual exercise in one minute periods, done by Parkinsons disease patients, before and after a training. The purpose was to verify if the training improves the number of trials and the percentage of success, which emphasizes the bivariate aspect of the problem. This model considers these characteristics, uses an adequate distribution to count data and settles the overdispersion suggested in the number os successes. As a generalization, initially, we propose a Beta-Binomial/Poisson-Gama model which also settles the overdispersion suggested by the total number of trials, besides includes possible different covariances between total trial counts in different evaluation instants. In this new model, we introduce a parameter that links the total trials with the success probability, making it even more general. We obtain maximum likelihood estimators for the parameters using an Newton-Raphson algorithm. We consider another data from the same study to illustrate the proposal methodology.

Page generated in 0.0645 seconds