Spelling suggestions: "subject:"black.""
101 |
Blade Vibration Measurement Techniques and Vibration Analysis of PlatesJagannath, D.V. 03 1900 (has links)
<p> The present investigation deals with Gas Turbine Blade
Vibrations.
Literature on the techniques employed for experimental
investigation of gas turbine blade vibration characteristics
has been summarised. Various steps have been explained by
reviewing the different techniques. Several causes for possible
excitation of blades as well as damping methods to suppress
the resulting vibrations are also included.
Attempts were made to determine experimentally the natural
frequencies of cantilever plates of thin uniform rectangular
cross section, with and without pretwist. First natural frequency_
-of the plate without twist was in good agreement with the one
calculated from the plate formula.
Free vibration analysis of cantilever plates of thin uniform
rectangular cross section is made. Finite Element Technique is
used to determine the elastic and inertial properties of a fully
compatible triangular element. Computed values of natural freqencies and mode shapes are compared with other analytical results. </p> / Thesis / Master of Engineering (ME)
|
102 |
Blade element approach for computational modeling of lift driven horizontal axis wind turbine performanceIttycheri, Abraham 25 November 2020 (has links)
The United Nations have declared the effects of climate change as the “defining issue of our time” (United Nations, 2019). As a result of increased industrialization in the last century to keep up with the demands of a growing global population, the global output of greenhouse emissions has rocketed, which is linked to the shifting and abnormal weather patterns of the planet. Electricity and heat production alone are attributed to generating 25% of greenhouse gas emissions (Edenhofer, et al.). To alleviate the increasing levels of carbon emission there is an effort to transition in green energy power generation sources like wind energy that is abundantly available in the midwestern United States. This study aims to implement the Blade Element Method derived modeling methods for predicting the performance of a wind turbine. The experimental results obtained from the MEXICO project is employed as the validation source for the research.
|
103 |
Effects of Microstructure on Fracture and Fatigue Crack Growth of Ti-48Al-2Nb-2Cr Next Generation Turbine Blade MaterialDahar, Matthew Scott 29 August 2014 (has links)
No description available.
|
104 |
CHARACTERIZATION OF CUP ANEMOMETER DYNAMICS AND CALCULATION OF THE ACOUSTIC NOISE PRODUCED BY A NREL PHASE VI WIND TURBINE BLADEChen, Yng-Ru 31 May 2016 (has links)
No description available.
|
105 |
A Moving Load Finite Element-Based Approach To Determining Blade Tip Forces During A Blade-On-Casing Incursion In A Gas Turbine EngineFerguson, Jeremy Lee 18 March 2008 (has links)
No description available.
|
106 |
Aerodynamic and Aeroacoustic Analysis of Low Reynolds Number Propellers Using Higher-Order RANS Transition Turbulence ModelingPisharoti, Naina 05 June 2024 (has links)
The advent of advanced vehicle concepts involving Urban Air Mobility (UAM) and small Unmanned Aerial Systems (sUAS) has brought about a new class of rotorcraft technology which operate predominantly in low-Reynolds ($Re$) number regimes. In such regimes, the flow experiences complex boundary layer phenomena like laminar separation, flow transition and reattachment. These effects are known to greatly alter the flow at and near the rotor wall, influencing its aerodynamic performance as well as the noise generated. Capturing these effects in our computational models is necessary to further our understanding of rotor aerodynamics and acoustics.
The current study has introduced a novel RANS transition turbulence model, SSG/LRR-$\omega$-$\gamma$, that is capable of modeling different modes of transition involving natural, bypass, separation-induced and crossflow transition. The model framework uses a Reynolds stress transport model, SSG/LRR-$\omega$, as the base turbulence formulation and is coupled with Menter's $\gamma$ transition model. It was validated using a number of canonical cases that exhibited different transition mechanisms and the model performed equivalently or better than existing state-of-the-art transition models. It is worthy to note that the proposed model was able to perform well in three-dimensional flows, demonstrated using the case of a prolate spheroid. This underscores the capability of Reynolds stress models to accurately capture complex flow curvatures, improving upon the capabilities of linear eddy viscosity models.
The transition model, integrated into OpenFOAM, was then employed to analyze two different UAV propellers. The rotor flow was examined using a URANS simulation with an overset grid. The objective was twofold: firstly, to validate the predictions generated by the proposed model for low-Reynolds number (low-$Re$) rotors, and secondly, to evaluate its effectiveness across a range of operating conditions. Comparisons were drawn against established fully turbulent and transition models. The analysis showed that transition models in general tended to be consistent in their predictions and less sensitive to changing operating conditions when compared to fully turbulent models. They also demonstrated the ability to accurately predict the mechanisms leading to separation and transition. Further, the proposed transition model demonstrated superior capability in capturing detailed flow features, particularly in the wake, compared to other fully turbulent and transition models, which is attributed to its Galilean invariant framework.
To leverage the boundary layer information obtained from the proposed model, a semi-empirical broadband noise prediction method was implemented. This method utilized boundary layer data predicted by URANS simulations to estimate blade self-noise. An evaluation of the fully turbulent $k$-$\omega$ SST model and the proposed transition model revealed that both exhibited reasonable accuracy at lower rotor advance ratios. However, the transition model performed better at higher advance ratios. It was also observed that CFD-based approaches provided superior prediction accuracy compared to lower-fidelity aerodynamic models in the context of blade self-noise prediction Finally, the proposed aerodynamic and acoustic computational framework was applied to a design case study of swept propellers to understand the advantages of blade sweep on rotor aerodynamics and noise. A qualitative analysis of the flow suggested that the swept rotor exhibited lower levels of blade wake interaction compared to the unswept geometry, in line with the experimental observations. / Doctor of Philosophy / Advanced vehicle concepts such as air taxis for Urban Air Mobility (UAM) and other multi-copter applications like drone delivery, reconnaissance, etc. are emerging sectors in aviation that have garnered great industrial as well as academic interest. However, since these vehicles are expected to fly at low altitudes within urban settings, noise mitigation is of particular interest to improve their public acceptance. The vehicle configurations in these applications predominantly comprise of rotorcraft which operate at low Reynolds ($Re$) numbers and tip speeds. These operating conditions introduce complex phenomena like flow transition and separation within the boundary layer that significantly alter their aerodynamic as well as aeroacoustic performance. The current work proposes a novel transition turbulence model that improves prediction of these complex boundary layer mechanisms in low-$Re$ propellers compared to the state-of-the-art. Furthermore, this work establishes a fast broadband noise prediction method by leveraging the detailed flow data from the transition model. The focus of this method is on modeling those propeller noise sources that are directly influenced by the aforementioned boundary layer phenomena (blade self-noise). The noise prediction study revealed that transition models yield consistent predictions across different operating conditions. Finally, a brief design study is conducted using the proposed aerodynamic and acoustic framework to assess the flow dynamics and possible noise mitigation capabilities of a swept propeller.
|
107 |
Large Scale Homogeneous Turbulence and Interactions with a Flat-Plate CascadeLarssen, Jon Vegard 07 April 2005 (has links)
The turbulent flow through a marine propulsor was experimentally modeled using a large cascade configuration with six 33 cm chord flat plates spanning the entire height of the test section in the Virginia Tech Stability Wind Tunnel. Three-component hot-wire velocity measurements were obtained ahead, throughout and behind both an unstaggered and a 35º staggered cascade configuration with blade spacing and onset turbulence integral scales on the order of the chord. This provided a much needed data-set of much larger Taylor Reynolds number than previous related studies and allowed a thorough investigation of the blade-blocking effects of the cascade on the incident turbulent field.
In order to generate the large scale turbulence needed for this study, a mechanically rotating "active" grid design was adopted and placed in the contraction of the wind tunnel at a streamwise location sufficient to cancel out the relatively large inherent low frequency anisotropy associated with this type of grid. The resulting turbulent flow is one of the largest Reynolds number (Reλ  1000) homogeneous near-isotropic turbulent flows ever created in a wind tunnel, and provided the opportunity to investigate Reynolds number effects on turbulence parameters, especially relating to inertial range dynamics. Key findings include 1) that the extent of local isotropy is solely determined by the turbulence generator and the size of the wind-tunnel that houses it; and 2) that the turbulence generator operating conditions affect the shape of the equilibrium range at fixed Taylor Reynolds number. The latter finding suggests that grid turbulence is not necessarily self-similar at a given Reynolds number independent of how it was generated.
The experimental blade-blocking data was compared to linear cascade theory and showed good qualitative agreement, especially for wavenumbers above the region of influence of the wind tunnel and turbulence generator effects. As predicted, the turbulence is permanently modified by the presence of the cascade after which it remains invariant for a significant downstream distance outside the thin viscous regions. The obtained results support the claim that Rapid Distortion Theory (RDT) is capable of providing reasonable estimates of the flow behind the cascade even though the experimental conditions lie far outside the predicted region of validity. / Ph. D.
|
108 |
The Effect of Endwall Contouring On Boundary Layer Development in a Turbine Blade PassageLynch, Stephen P. 22 September 2011 (has links)
Increased efficiency and durability of gas turbine components is driven by demands for reduced fuel consumption and increased reliability in aircraft and power generation applications. The complex flow near the endwall of an axial gas turbine has been identified as a significant contributing factor to aerodynamic loss and increased part temperatures. Three-dimensional (non-axisymmetric) contouring of the endwall surface has been shown to reduce aerodynamic losses, but the effect of the contouring on endwall heat transfer is not well understood.
This research focused on understanding the general flow physics of contouring and the sensitivity of the contouring to perturbations arising from leakage features present in an engine. Two scaled low-speed cascades were designed for spatially-resolved measurements of endwall heat transfer and film cooling. One cascade was intended for flat and contoured endwall studies without considering typical engine leakage features. The other cascade modeled the gaps present between a stator and rotor and between adjacent blades on a wheel, in addition to the non-axisymmetric endwall contouring.
Comparisons between a flat and contoured endwall showed that the contour increased endwall heat transfer and increased turbulence in the forward portion of the passage due to displacement of the horseshoe vortex. However, the contour decreased heat transfer further into the passage, particularly in regions of high heat transfer, due to delayed development of the passage vortex and reduced boundary layer skew. Realistic leakage features such as the stator-rotor rim seal had a significant effect on the endwall heat transfer, although leakage flow from the rim seal only affected the horseshoe vortex. The contours studied were not effective at reducing the impact of secondary flows on endwall heat transfer and loss when realistic leakage features were also considered. The most significant factor in loss generation and high levels of endwall heat transfer was the presence of a platform gap between adjacent airfoils. / Ph. D.
|
109 |
Measurements of Cooling Effectiveness Along the Tip of a Turbine BladeCouch, Eric L. 04 August 2003 (has links)
In a gas turbine engine, turbine blades are exposed to temperatures above their melting point. Film-cooling and internal cooling techniques can prolong blade life and allow for higher engine temperatures. This study examines a novel cooling technique called a microcircuit, which combines internal convection and pressure side injection on a turbine blade tip. Holes on the tip called dirt purge holes expel dirt from the blade, so other holes are not clogged. Wind tunnel tests are used to observe how effectively dirt purge and microcircuit designs cool the tip. Tip gap size and blowing ratio are varied for different tip cooling configurations.
Results show that the dirt purge holes provide significant film cooling on the leading edge with a small tip gap. Coolant injected from these holes impacts the shroud and floods the tip gap reducing tip leakage flow.
With the addition of a microcircuit, coolant is delivered to a larger area of the tip. In all cases, cooling levels are higher for a small tip gap than a large tip gap. Increased blowing ratio does not have a dramatic effect on microcircuit film-cooling at the midchord but does improve internal cooling from the microcircuit. While the combined dirt purge holes and microcircuit cool the leading edge and midchord areas, there remains a small portion of the trailing edge that is not cooled. Also, results suggest that blowing from the microcircuit diminishes the tip leakage vortex. Overall, the microcircuit appears to be a feasible method for prolonging blade life. / Master of Science
|
110 |
Experimental and Computational Study of Heat Transfer on a Turbine Blade Tip with a ShelfMorris, Angela 13 June 2005 (has links)
Cooling of turbine parts in a gas turbine engine is necessary for operation as the temperature of combustion gases is higher than the melting temperature of the turbine materials. The gap between rotating turbine blades and the stationary shroud provides an unintended flow path for hot gases. Gases that flow through the tip region cause pressure losses in the turbine section and high heat loads to the blade tip. This thesis studies the heat transfer on an innovative tip geometry intended to help reduce aerodynamic losses. The blade tip has a depression (shelf) on the tip surface along much of the pressure side of the blade and film-cooling holes along the depression. This research experimentally measured the effect of the shelf, coolant flow and tip gap on heat transfer on the blade tip.
Stationary experiments were performed in a low speed wind tunnel on a linear cascade with two different tip gaps and multiple coolant flow rates through the film-cooling holes. Tests showed that baseline Nusselt numbers on the tip surface were reduced with the shelf tip compared with a flat tip. Measurements indicated that film-cooling was more effective with a small tip gap than with a large tip gap. Experimental and computational results demonstrated a lack of coolant spreading that was detrimental to regions between the film-cooling holes. While the coolant was effective on the blade tip, the leading and trailing edge regions were found to have high heat transfer coefficients with little available cooling. / Master of Science
|
Page generated in 0.0615 seconds