• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EVALUATING LUBRICANTS IN SHEET METAL FORMING

Lanzon, Joseph, kimg@deakin.edu.au 1999 July 1918 (has links)
The sheet metal forming process basically involves the shaping of sheet metal of various thickness and material properties into the desired contours. This metal forming process has been extensively used by the automotive industry to manufacture both car panels and parts. Over the years numerous investigations have been conducted on various aspects of the manufacturing process with varied success. In recent years the requirements on the sheet metal forming industry have headed towards improved stability in the forming process while lowering environmental burdens. Therefore the overall aim of this research was to identify a technique for developing lubricant formulations that are insensitive to the sheet metal forming process. Due to the expense of running experiments on production presses and to improve time efficiency of the process the evaluation procedure was required to be performed in a laboratory. Preliminary investigations in the friction/lubricant system identified several laboratory tests capable of measuring lubricant performance and their interaction with process variables. However, little was found on the correlation between laboratory tests and production performance of lubricants. Therefore the focus of the research switched to identifying links between the performance of lubricants in a production environment and laboratory tests. To reduce the influence of external parameters all significant process variables were identified and included in the correlation study to ensure that lubricant formulations could be desensitised to all significant variables. The significant process variables were found to be sensitive to die position, for instance: contact pressure, blank coating of the strips and surface roughness of the dies were found significant for the flat areas of the die while no variables affected friction when polished drawbeads were used. The next phase was to identify the interaction between the significant variables and the main lubricant ingredient groups. Only the fatty material ingredient group (responsible for the formation of boundary lubricant regimes) was found to significantly influence friction with no interaction between the ingredient groups. The influence of varying this ingredient group was then investigated in a production part and compared to laboratory results. The correlation between production performance and laboratory tests was found to be test dependant. With both the Flat Face Friction test and the Drawbead Simulator unaffected by changes in the lubricant formulation, while the Flat Bottom Cup test showing similar results as the production trial. It is believed that the lack of correlation between the friction tests and the production performance of the lubricant is due to the absence of bulk plastic deformation of the strip. For this reason the Ohio State University (OSU) friction test was incorporated in the lubricant evaluation procedure along with a Flat Bottom Cup test. Finally, it is strongly believed that if the lubricant evaluation procedure highlighted in this research is followed then lubricant formulations can be developed confidently in the laboratory.

Page generated in 0.0878 seconds