• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rock Fracturing & Mine to Mill Optimization

Kim, Kwangmin January 2012 (has links)
The research presented in this dissertation consists of four topics. The first of these topics is an experimental study of rock fracturing due to rapid thermal cooling, and the other three topics are related to mine-to-optimization. This includes the development and testing of a site-specific model for blast fragmentation, the development of a technique for utilizing digital image processing and ground-based LIDAR for rock mass characterization, and an experimental study of the effects of ore blending on mineral recovery. All four topics are related through the subject of rock fracturing and rock fragmentation. The results from this research are important and can be used to improve engineering design associated with rock excavation and rock fragmentation. First of all, a successful set of laboratory experiments and 3D numerical modeling was conducted, looking at the effects of rapid thermal cooling on rock mechanical properties. The results gave the unexpected finding that depending on the rock type and the thermal conditions, rapid cooling can result in either overall crack growth or crack closing. Secondly, a site-specific model for predicting blast fragmentation was developed and tested at an open-pit copper mine in Arizona. The results provide a practical technique for developing a calibrated blasting model using digital images and digital image processing software to estimate in-situ block size, and a calibrated Schmidt hammer to estimate intact tensile strength. Thirdly, a new technique was developed to conduct cell mapping in open-pit mines using the new technologies of digital image processing and ground-based LIDAR. The results show that the use of these new technologies provide an increased accuracy and the ability for more sophisticated slope stability analyses with no increase in field time only a moderate increase in data processing time. Finally, a successful set of laboratory experiments was conducted looking at the effects of ore blending and grinding times on mineral recovery from a set of six ore from a copper mine in Arizona. The results gave the unexpected finding that for a fixed grinding time, the mineral recovery of the blended ores exceeded the average of the individual recoveries of the same ores unblended.
2

Issues of particulate matter emission from diesel engine and its control

Alozie, Nehemiah Sabinus Iheadindueme January 2016 (has links)
Particulate matter (PM) emitted from diesel engines encompasses soluble (volatile) and insoluble (non-volatile) matter. The concept of volatility or solubility depends on the method of separation. The volatile matter includes sulphates and nitrates which are bound to water vapour; and myriads of hydrocarbon species. The solid matter is comprised of black carbon and ash. Its mitigation combines the use of internal engine design and operating factors like fuel injection and spray, air and fuel mixing, chamber designs and fuel improvements. Control technologies that act on the exhaust gases are called ‘after-treatments' which include the use of oxidation catalysts, filter trap and reductant of nitrogen oxides along the exhaust system. The central issues of this thesis are measurement schemes that involve stripping the PM of volatile matter in order to determine the actual values of nano-size solid carbon particles that pose significant health risk and their mitigations. In the experimental measurements, exhaust gases were generated at low engine load which are rich in unburnt hydrocarbons that nucleate into particles at low temperatures. Similarly, exhaust gases generated at medium load contain volatile and soot components; these were used to study dilution effects on PM emission. The interplay of mixing and cooling was used to explain the behaviour of saturation characteristics of the volatile fractions in the dilution process which influenced nucleation of volatile species. The parameters of particle number concentration reduction factor (PCRF) and volatile removal efficiency (VRE) were used to give extended interpretation to dilution of PM during conditioning, than mere dilution ratios. On this basis, comparison was made on the effect of carrier gases on dilution process and it was found that air is superior when there is need for volatile reduction while nitrogen is better when it is necessary to freeze further reaction, especially at low dilution ratios. In addition, a two-stage hot dilution technique was used to mimic the Particle Measurement Programme (PMP) prescription, and it gave better PCRF and VRE values. The study of PM mitigation by filter traps focused on burning-off the accumulated matter to allow free flow of exhaust gases, and the energy it takes to initiate and maintain PM combustion. Therefore a fundamental study of soot oxidation relevant to regeneration of diesel particulate filter (DPF) was made. This was extended to investigate if blending of petrodiesel with biodiesel affects PM oxidation. It is deducible that oxidation of PM generated from fuel with biodiesel blends is slightly faster compared to that from pure petrodiesel. A feasible use of microwave power to regenerate catalysed and non-catalysed silicon carbide (SiC) diesel particulate filters (DPFs) using an available multimode microwave cavity was also carried out. Results show that with catalysed DPFs, catalyst light-off temperature reduced by 100oC under the influence of microwave irradiation, while for non-catalysed DPF, regeneration was achieved within 550-600oC at a time estimated to be lower compared to electrical resistance heating approach.
3

The Impact of the Optical Phenomena of Color Adjustment Potential and Kubelka-Munk Layering of Dental Composite Resins on Modern Esthetic Dentistry

Carney, Melody Noelle 27 May 2015 (has links)
No description available.

Page generated in 0.0826 seconds