• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Investigation of the Effect of Wall Adaptation on Flow Over a Cylinder in a Modernized Adaptive-Wall Wind Tunnel

Bishop, Michael Joseph January 2010 (has links)
A renovation of an adaptive-wall wind tunnel was completed to improve flow quality, automate data acquisition, integrate a three-axis traversing mechanism, and regain functionality of an adaptive-wall test section. Redesign of the settling chamber significantly improved flow quality, with the resulting turbulence intensity of 0.3% and flow uniformity of ±0.6% matching characteristics of research-grade wind tunnels. The functionality of the adaptive-wall test section was tested by analyzing the effect of wall adaptation on flow development over a circular cylinder. Experiments were carried out for a Reynolds number (Red) of 57,000 for three blockage ratios: 5%, 8%, and 17%. Measurements were made in three wall configurations: geometrically straight walls (GSW), aerodynamically straight walls (ASW), and streamlined walls (SLW). Solid blockage effects were clearly evident in cylinder surface pressure distributions for the GSW and ASW configurations, manifested by an increased peak suction and base suction. Upon streamlining the walls, pressure distributions for each blockage ratio matched distributions expected for low blockage ratios. Wake blockage limited wake growth in the GSW configuration at 7.75 and 15 diameters downstream of the cylinder for blockages of 17% and 8%, respectively. This adverse effect was rectified by streamlining the walls with the resulting wake width development matching that expected for low blockage ratios. Wake vortex shedding frequency and shear layer instability frequency increased in the GSW and ASW configurations with increasing blockage ratio. Invariance of the near wake width with wall configuration suggests that frequency increase is caused by the increased velocity due to solid blockage effects. For all the blockage ratios investigated, the increased wake vortex shedding frequency observed in the ASW and GSW configurations was corrected in the SLW configuration, with the resulting Strouhal numbers of about 0.19, matching that expected for low blockage ratios at the investigated Red.
2

Experimental Investigation of the Effect of Wall Adaptation on Flow Over a Cylinder in a Modernized Adaptive-Wall Wind Tunnel

Bishop, Michael Joseph January 2010 (has links)
A renovation of an adaptive-wall wind tunnel was completed to improve flow quality, automate data acquisition, integrate a three-axis traversing mechanism, and regain functionality of an adaptive-wall test section. Redesign of the settling chamber significantly improved flow quality, with the resulting turbulence intensity of 0.3% and flow uniformity of ±0.6% matching characteristics of research-grade wind tunnels. The functionality of the adaptive-wall test section was tested by analyzing the effect of wall adaptation on flow development over a circular cylinder. Experiments were carried out for a Reynolds number (Red) of 57,000 for three blockage ratios: 5%, 8%, and 17%. Measurements were made in three wall configurations: geometrically straight walls (GSW), aerodynamically straight walls (ASW), and streamlined walls (SLW). Solid blockage effects were clearly evident in cylinder surface pressure distributions for the GSW and ASW configurations, manifested by an increased peak suction and base suction. Upon streamlining the walls, pressure distributions for each blockage ratio matched distributions expected for low blockage ratios. Wake blockage limited wake growth in the GSW configuration at 7.75 and 15 diameters downstream of the cylinder for blockages of 17% and 8%, respectively. This adverse effect was rectified by streamlining the walls with the resulting wake width development matching that expected for low blockage ratios. Wake vortex shedding frequency and shear layer instability frequency increased in the GSW and ASW configurations with increasing blockage ratio. Invariance of the near wake width with wall configuration suggests that frequency increase is caused by the increased velocity due to solid blockage effects. For all the blockage ratios investigated, the increased wake vortex shedding frequency observed in the ASW and GSW configurations was corrected in the SLW configuration, with the resulting Strouhal numbers of about 0.19, matching that expected for low blockage ratios at the investigated Red.
3

Development of a rig and testing procedures for the experimental investigation of horizontal axis kinetic turbines

Lartiga, Catalina 30 April 2012 (has links)
The research detailed in this thesis was focused on developing an experimental testing system to characterize the non-dimensional performance coefficients of horizontal axis kinetic turbines, including both wind turbines and tidal turbines. The testing rig was designed for use in a water tunnel with Particle Image Velocimetry (PIV) wake survey equipment to quantify the wake structures. Precision rotor torque measurement and speed control was included, along with the ability to yaw the rotor. The scale of the rotors were purposefully small, to enable rapid-prototyping techniques to be used to produce many different test rotors at low cost to furnish a large experimental dataset. The first part of this work introduces the mechanical design of the testing rig developed for measuring the output power of the scaled rotor models with consideration for the requirements imposed by the PIV wake measurements. The task was to design a rig to fit into an existing water tunnel facility with a cross sectional area of 45 by 45 cm, with a rotor support structure to minimize the flow disturbance while allowing for yawed inflow conditions. A rig with a nominal rotor diameter of 15 cm was designed and built. The size of the rotor was determined by studying the fluid similarities between wind and tidal turbines, and choosing the tip speed ratio as a scaling parameter. In order to maximize the local blade Reynolds number, and to obtain different tip speed ratios, the rig allows a rotational speed in the range of 500 to 1500 RPM with accurate rotor angular position measurements. Rotor torque measurements enable rotor mechanical power to be calculated from simulation results. Additionally, it is included in this section a description of the instrumentation for measurement and the data acquisition system. It was known from the outset that measurements obtained in the experiments would be subject to error due to blockage effects inherent to bounded testing facilities. Thus, the second part of this work was dedicated to developing a novel Computational Fluid Dynamics (CFD) methodology to post-process the experimental data acquired. This approach utilizes the velocity field data at the rotor plane obtained from the water tunnel PIV test data, and CFD simulations based on the actuator disk concept to account for blockage without the requirement for thrust data which would have been unreliable at the low forces encountered in the tests. Finally, the third part of this work describes the practical aspects of the laboratory project, including a description of the operational conditions for turbine testing. A set of preliminary measurements and results are presented, followed by conclusions and recommendations for future work. Unfortunately, the water tunnel PIV system was broken and thus unavailable for more than a year, so only mechanical measurements were possible with the rig during the course of this thesis work. / Graduate

Page generated in 0.0436 seconds