Spelling suggestions: "subject:"bloodcontacting devices"" "subject:"noncontacting devices""
1 |
Development of a Method to Study Thromboembolism by Direct Observation in Blood-Contacting Microsystems Using High-Definition Video MicroscopyKim, Yong Min 09 August 2012 (has links) (PDF)
A unique and novel method to study thromboembolism by direct observation was developed. High-definition videos of thrombus formation and embolization were successfully obtained in miniature flow cells using in-vitro, non-invasive, real-time techniques. Critical parameters of thromboembolism such as thrombus growth rate, thrombus growth direction, shear force on the thrombus at embolization, and adhesion strength of the thrombus to the foreign surface were determined. Thrombus growth was found predominantly in two locations: 1) in the flow recirculation zone just after the trailing edge of the small tubes (53%) and 2) at the leading edge of the small tubes (47%). In the small tubes, thrombus volume and shear force acting on the thrombus increased in a power-law like function of time. In the large tubes, thrombus volume and shear force acting on the thrombus increased in a linear like function of time. The slope of thrombus growth rate in the small tubes was significantly greater than that in the large tubes. Thrombus growth direction was also estimated by tracking the thrombus center of mass with respect to time and typically ranged from 15 to 35 degrees from the direction of flow. According to observations, embolization seems to occur via two possible mechanisms: 1) complete detachment of the thrombus by sliding off the foreign surface or 2) partial embolization of the thrombus by internal tearing. The estimated shear force on the thrombus at embolization was determined and was significantly greater in the small tubes than in the large tubes. The adhesion strengths of thrombi were calculated for the small tubes using the shear force at embolization and the estimated thrombus attachment area and ranged from 9.63 to 28.83 N/m2 (mean = 16.24 ± 2.59 N/m2 95% confidence), which was in good agreement with published results of platelet retention experiments. An experimental series demonstrated that the developed method could be used to study the effects of controlled variables on thromboembolism parameters. In that series, heparin concentration in blood, blood flow rate, and device design were studied one variable at a time to test their effects on thrombus growth parameters and adhesion strength. Because of the small number of data, these preliminary results were statistically insignificant but pointed the way for future studies.
|
2 |
Leukocyte Response to Elastin-Like Polypeptide CoatingsRooney, Meghan 15 October 2013 (has links)
Small diameter synthetic vascular grafts have yet to be clinically successful due to luminal narrowing from thrombosis and intimal hyperplasia. Current attempts to address this issue include the development of materials that support endothelialisation and protein modification to the material surfaces that reduce thrombosis. The extracellular matrix protein elastin has been found to be one of the least thrombogenic components of blood vessels, and its purified and recombinant forms have shown reduced thrombogenicity in both in vitro and in vivo models. Biomaterial coatings of elastin-like polypeptides (ELPs) recombinantly produced in the Woodhouse laboratory showed reduced fibrinogen adsorption, platelet adhesion, and platelet activity. However, the reason for their relative non-thrombogenicity is still not fully understood. In this work, the leukocyte response to ELP-coated materials was investigated. In particular, ELP1 and ELP4, which differ in molecular weight and sequence length, were physically adsorbed to a polyethylene terephthalate surface (MylarTM), yielding 0.22 ± 0.13 μg/cm2 and 0.37 ± 0.19 μg/cm2 surface coverage, respectively, as determined by the colorimetric assay, FastinTM Elastin. These surfaces were exposed to flowing citrated whole blood for surface and bulk evaluation of leukocyte activity using scanning electron microscopy and flow cytometry, respectively. Little leukocyte activation was observed on the surface of the controls, low-density polyethylene and uncoated MylarTM. In the bulk, tissue factor (TF) expression (monocytes: ELP1 = 38.6 ± 16.3 %, ELP4 = 33.9 ± 18.1 %) and platelet-leukocyte aggregates determined by CD61 (monocytes: ELP1 = 63.1 ± 17.1 %, ELP4 = 61.8 ± 16.8 %; granulocytes: ELP1 = 62.7 ± 17.0 %, ELP4 = 60.5 ± 20.1 %) were both decreased compared to uncoated MylarTM, while CD11b upregulation (monocytes: ELP1 = 18.7 ± 2.2 %, ELP4 = 19.7 ± 2.7 %; granulocytes: ELP = 21.4 ± 3.7 %, ELP4 = 22.0 ± 3.2 %) was increased. The statistical dependence of TF expression and platelet-monocyte aggregates was tested; however, no correlation was found. Overall, platelet-leukocyte aggregate formation was reduced and there were conflicting results with regards to the reduction of leukocyte activation for the ELP coatings on MylarTM. / Thesis (Master, Chemical Engineering) -- Queen's University, 2013-10-10 15:34:51.802
|
Page generated in 0.0847 seconds