• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regularity and boundary behavior of solutions to complex Monge–Ampère equations

Ivarsson, Björn January 2002 (has links)
<p>In the theory of holomorphic functions of one complex variable it is often useful to study subharmonic functions. The subharmonic can be described using the Laplace operator. When one studies holomorphic functions of several complex variables one should study the plurisubharmonic functions instead. Here the complex Monge--Ampère operator has a role similar to that of the Laplace operator in the theory of subharmonic functions. The complex Monge--Ampère operator is nonlinear and therefore it is not as well understood as the Laplace operator. We consider two types of boundary value problems for the complex Monge--Ampere equation in certain pseudoconvex domains. In this thesis the right-hand side in the Monge--Ampère equation will always be smooth, strictly positive and meet a monotonicity condition. The first type of boundary value problem we consider is a Dirichlet problem where we look for plurisubharmonic solutions which are zero on the boundary of the domain. We show that this problem has a unique smooth solution if the domain has a smooth bounded plurisubharmonic exhaustion function which is globally Lipschitz and has Monge--Ampère mass larger than one everywhere. We obtain some results on which domains have such a bounded exhaustion function. The second type of boundary value problem we consider is a boundary blow-up problem where we look for plurisubharmonic solutions which tend to infinity at the boundary of the domain. Here we also assume that the right-hand side in the Monge--Ampère equation satisfies a growth condition. We study this problem in strongly pseudoconvex domains with smooth boundary and show that it has solutions which are Hölder continuous with arbitrary Hölder exponent α, 0 ≤ α < 1. We also show a uniqueness result. A result on the growth of the solutions is also proved. This result is used to describe the boundary behavior of the Bergman kernel.</p>
2

Regularity and boundary behavior of solutions to complex Monge–Ampère equations

Ivarsson, Björn January 2002 (has links)
In the theory of holomorphic functions of one complex variable it is often useful to study subharmonic functions. The subharmonic can be described using the Laplace operator. When one studies holomorphic functions of several complex variables one should study the plurisubharmonic functions instead. Here the complex Monge--Ampère operator has a role similar to that of the Laplace operator in the theory of subharmonic functions. The complex Monge--Ampère operator is nonlinear and therefore it is not as well understood as the Laplace operator. We consider two types of boundary value problems for the complex Monge--Ampere equation in certain pseudoconvex domains. In this thesis the right-hand side in the Monge--Ampère equation will always be smooth, strictly positive and meet a monotonicity condition. The first type of boundary value problem we consider is a Dirichlet problem where we look for plurisubharmonic solutions which are zero on the boundary of the domain. We show that this problem has a unique smooth solution if the domain has a smooth bounded plurisubharmonic exhaustion function which is globally Lipschitz and has Monge--Ampère mass larger than one everywhere. We obtain some results on which domains have such a bounded exhaustion function. The second type of boundary value problem we consider is a boundary blow-up problem where we look for plurisubharmonic solutions which tend to infinity at the boundary of the domain. Here we also assume that the right-hand side in the Monge--Ampère equation satisfies a growth condition. We study this problem in strongly pseudoconvex domains with smooth boundary and show that it has solutions which are Hölder continuous with arbitrary Hölder exponent α, 0 ≤ α &lt; 1. We also show a uniqueness result. A result on the growth of the solutions is also proved. This result is used to describe the boundary behavior of the Bergman kernel.

Page generated in 0.1292 seconds