• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and Progression of Aeolian Blowouts in Padre Island National Seashore

Jewell, Mallorie E 16 December 2013 (has links)
This study characterizes the development and migration of blowouts within Padre Island National Seashore (PAIS). A combination of aerial photographs and Light Detection and Ranging (LIDAR) are used to track the migration of eighteen blowouts, while Ground-penetrating Radar (GPR) is used to investigate the subsurface at two smaller sites in the study area. This data, coupled with beach morphology and changing anthropogenic factors, helps understand why the dune blowouts develop and are restricted to a particular section of the National Seashore. Aerial Photographs taken at least twice a decade since 1969 were used to track blowouts. Each blowout was digitized in order to understand its morphometric characteristics by studying its length, width, area, segmentation, perimeter, and the width of the neck, when present, through the foredune. The velocity and direction of movement were also calculated. Cluster analysis was used to analyze the blowouts using these morphological variables. Based on this data, blows appear to group into two morphologically different clusters. Blowouts grouped into Cluster 1 are longer, thinner, have smaller perimeters and areas, smaller throat widths, and are furthest from the beach access road. A lower dune elevation leads to a larger wave runup to crest height ratio. A larger ratio suggests that the dunes are more easily overtopped during large storms, thus scarping, a precursor to blowout development, is increased. Cluster 2 blowouts tend to be longer, wider, and stabilized faster leading to a more undulated perimeter in addition to a smaller wave runup potential due to a higher dune elevation. Historically blowouts covered the entire northern portion of PAIS. In the 1970’s the portion of the beach north of Park Road 22 was designated as non-driving. Since then all blowouts in this section have revegetated, while, blowouts in the driving section are still active. Beach driving pulverizes seaweed leading to less deposition along the dune toe and therefore a lower elevation of the backshore. As a result there is a greater wave runup in storms leading to an increase in susceptibility to scarping, and therefore, blowouts. Despite the fact that storms are the primary mechanism for blow development, anthropogenic effects, such as vehicle traffic, flatten the beach profile allowing for lower areas to become inundated during storms. This, along with decreased sediment budget and increased storm frequency increases the potential for blowouts to form events and leave the island vulnerable to an increased rate of sea level rise. GPR surveys were completed at two sites; an active blowout with a foredune that is not completely reestablished (Site 1) and a blowout that is stabilized by vegetation (Site 2). Six GPR surveys were completed at Site 1 and four surveys were completed at Site 2 that show the preservation of historic phases, surfaces, and facies used to interpret sequences and compare to aerial photography and LiDAR data. Site 1 moves through five phases that begin in 1969 and end at the present location, while Site 2 moves through three active phases and then ends in a fourth phase by becoming completely stabilized with vegetation in 2010.
2

Simulating Gas Blowout In Tropical Shallow Waters

LEITE, Fabiana Soares 26 September 2012 (has links)
Submitted by Eduarda Figueiredo (eduarda.ffigueiredo@ufpe.br) on 2015-03-12T15:30:43Z No. of bitstreams: 2 Leite_FS-Tese2012-DOCEAN-tt.pdf: 7355705 bytes, checksum: cdd11be57564224083c3a2b8946fb3de (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-12T15:30:44Z (GMT). No. of bitstreams: 2 Leite_FS-Tese2012-DOCEAN-tt.pdf: 7355705 bytes, checksum: cdd11be57564224083c3a2b8946fb3de (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2012-09-26 / FACEPE / A exploração de óleo e gás vem apresentando um rápido crescimento em regiões de baixa latitude, mesmo assim pouquíssimos experimentos e modelagens envolvendo vazamento de gás têm sido publicados pela comunidade científica. Este estudo foi desenvolvido de modo a aumentar o conhecimento a respeito do comportamento da pluma de gás durante um vazamento acidental em águas rasas. Os métodos usados e os resultados obtidos são apresentados neste estudo, assim como um modelo para simular o transporte e a dispersão de uma pluma de gás liberada em águas rasas. Primeiramente, experimentos de campo foram realizados através da simulação de um vazamento de gás natural a aproximadamente 30 m de profundidade na costa nordeste do Brasil. Quatro cenários distintos, com variadas condições de forçantes geofísicas, foram associados a diferentes fluxos de gás (de 3000 a 9000 L.h-1) e períodos sazonais (verão e inverno). Num segundo estágio, a análise de dispersão da pluma de gás foi realizada com os dados obtidos in situ. O modelo usou um volume de controle lagrangiano para discretização e simulou a evolução da pluma de gás associando a termodinâmica e o impacto desta na hidrodinâmica da pluma de gás. De acordo com os dados coletados, o transporte predominante da corrente ocorreu para sulsudoeste (nordeste) durante o verão (inverno). A diferença no diâmetro da pluma ocorreu principalmente na camada mais próxima à superfície. A pluma de gás deslocou-se para sul-sudoeste no verão e para nordestenorte durante o inverno. Os fluxos de gás liberados no assoalho oceânico pareceram não afetar a hidrodinâmica local. O movimento da pluma foi sempre influenciado pelas forçantes de maré e meteorológica, nesta ordem. Os resultados de modelagem indicaram que, à medida que a pluma sobe na coluna de água, a mesma é deslocada horizontalmente na direção da corrente predominante. A situação extrema estabeleceu um raio crítico (máximo deslocamento horizontal) da fonte de gás de 35,2 m. A comparação entre os dados medidos e os calculados mostrou que o modelo representou satisfatoriamente as principais características da liberação de gás, tais como o deslocamento, o diâmetro e o tempo de ascensão da pluma. Apesar das plumas apresentarem a largura média da mesma ordem de magnitude entre as medições e os cálculos, melhorias podem aumentar o desempenho do modelo durante o desenvolvimento inicial das plumas. Dados importantes e únicos foram coletados durante os vazamentos de gás, os quais contribuíram para a caracterização do comportamento de diferentes fluxos em diferentes períodos. Os experimentos forneceram uma base de dados para um modelo computacional que foi capaz de reproduzir o transporte e a dispersão de uma pluma de gás no ambiente marinho. O modelo foi capaz de prever o transporte e destino do gás liberado no ambiente. O mesmo pode, portanto, ser usado como uma ferramenta para planos de contingência de vazamentos acidentais de gás no oceano. / Underwater oil and gas exploration has been growing fast in low latitude regions, even though very few experimental data acquisition and modeling involving gas release in tropical and shallow waters have been published by the scientific community. This study was developed to increase the knowledge concerning the gas behavior during a subsurface blowout in shallow waters. The methods used and the results obtained from this study are presented, as well as a model to simulate the transport and dispersion of a subsurface gas plume released from shallow waters. At first, field experiments were carried out by simulating a subsurface blowout with natural gas at approximately 30 m depth in the Northeast Brazilian coast. Four distinct scenarios with varied conditions of geophysical forcing were associated with different fluxes (from 3000 to 9000 L.h-1) and seasonal periods (summer and winter). As a second stage, the analysis of the gas plume dispersion was accomplished with the data obtained from the above campaigns. The model used a Lagrangian control volume for discretization and simulated the gas plume evolution, associating thermodynamics and the impact of the thermodynamics on the hydrodynamics of the gas plume. The predominant transport occurred toward the south-southwest (northeast) during the summer (winter) period. The difference in the plume width occurred mainly in the upper surface layer. The gas plume displaced toward the south-southwest (northeast-north) during the summer (winter) period. The gas flow releases seemed not to affect the local hydrodynamics. The plume movement was always influenced by the tidal and meteorological forcings, in that order. The simulation results indicated that, as the gas plume rose in the water column, the same plume was horizontally displaced toward current predominant direction. The extreme situation provided a critical radius (maximum horizontal displacement) from the gas release source of 35.2 m. The comparison between the measured and the calculated data showed that the model satisfactorily represented the main features of the gas release, such as the displacement, diameter and ascending time of the plume. Although the mean plume widths have the same order of magnitude between the measurements and the calculations, improvements may enhance the model’s performance during the earlier plume development. Important and unique data were collected during these subsurface releases, which contributed to the characterization of the behavior of different blowouts in different seasons. The experiments provided a baseline for a computational model capable of reproducing gas plume transport and dispersion in the marine environment. The model was able to predict the gas release transport and fate in the environment. Thus it can be used as a tool for contingency planning of an accidental underwater gas release.

Page generated in 0.0208 seconds