• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Body Armor Shape Sensing with Fiber Optic Sensors

Seng, Frederick Alexander 01 July 2018 (has links)
In this dissertation, the rate of the BFD during body armor impact is characterized with fiber Bragg gratings for the first time ever. The depth rate is characterized using a single fiber optic sensor, while the entire shape rate can be characterized using multiple fiber optic sensors. This is done with a final depth accuracy of less than 10% and a timing accuracy of 15% for BFDs as deep as 50 mm and impact event of less than 1 millisecond. The shape sensing method introduced in this dissertation is different from traditional fiber optic sensor shape reconstruction methods in the fact that strain from the kinetic friction regime is used rather than the static friction regime. In other words, information from the fiber optic sensors slipping is used to reconstruct the shape in this work, whereas strain from the fiber optic sensor remaining fixed to a reference is used for typical fiber optic shape sensing purposes.
2

Dynamic Body Armor Shape Sensing Using Fiber Bragg Gratings and Photoassisted Silicon Wire-EDM Machining

Velasco, Ivann Civi Lomas-E 01 June 2021 (has links)
In this thesis, a method to improve survivability is developed for fiber Bragg gratings under high velocity impact in dynamic body armor shape sensing applications by encasing the fiber in silicone. Utilizing the slipping of the fiber within the silicone channel, a proportionality relationship between the strain of the fiber to the acceleration of the impacting projectile is found and is used to obtain the rate of the back-face deformation. A hybrid model is developed to handle errors caused by the stick-slip of the fiber by fitting an inverse exponential to stuck sections found in a captured strain profile and double integrated to transform the stuck section to its equivalent slipping. Displacement errors below 10% was achieved using the hybrid model. A graphical user interface with a step-by-step walkthrough and a fiber Bragg grating interrogation system was designed for test engineers to utilize this technology. Test engineers from the Army Test Center in Aberdeen, MD were trained on this technology and successfully captured and processed shots using this technology. A method for cutting Silicon through wire-EDM machining is developed by utilizing the photoconductive properties of Silicon. Cut rates for unilluminated and illuminated Silicon was compared and a 3x faster cut was achieved on the illuminated cuts.

Page generated in 0.0703 seconds