• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparing the effects on physical performance when super oxygenated water is consumed vs regular bottled water /

Willmert, Nancy R. January 2001 (has links)
Thesis (M.S.)--University of Wisconsin -- La Crosse, 2001. / Includes bibliographical references.
2

The effect of extracellular osmolality on cell volume and resting muscle metabolism

Antolić, AnaMaria. January 2006 (has links)
Thesis (M. Sc.)--Brock University, 2006. / Includes bibliographical references.
3

The effect of extracellular osmolality on cell volume and resting skeletal muscle metabolism

Antolić, AnaMaria. January 2006 (has links)
Thesis (M.S.)--Brock University, 2006. / Includes bibliographical references (leaves 88-111). Also available online (PDF file) by a subscription to the set or by purchasing the individual file.
4

Triangle Water Index (TWI): An Advanced Approach for More Accurate Detection and Delineation ofWater Surfaces in Sentinel-2 Data

Niu, Lifeng, Kaufmann, Hermann, Xu, Guochang, Zhang, Guangzong, Ji, Chaonan, He, Yufang, Sun, Mengfei 11 December 2024 (has links)
One of the most basic classification tasks in remote sensing is to distinguish between water bodies and other surface types. Although there are numerous techniques for extracting surface water from satellite imagery, there is still a need for research to more accurately identify water bodies with a view to efficient water maintenance in the future. Delineation accuracy is limited by varying amounts of suspended matter and different background land covers, especially those with low albedo. Therefore, the objective of this study was to develop an advanced index that improves the accuracy of extracting water bodies characterized by varying amounts of water constituents, especially in mountainous regions with highly rugged terrain, urban areas with cast shadows, and snow- and ice-covered areas. In this context, we propose a triangle water index (TWI) based on Sentinel-2 data. The principle of the TWI is that it first analyzes the reflectance values of water bodies in different wavelength bands to determine specific types. Then, triangles are constructed in a cartesian coordinate system according to the reflectance values of different water bodies in the respective wavelength bands. Finally, the TWI is achieved by using the triangle similarity theorem. We tested the accuracy and robustness of the TWI method using Sentinel-2 data of several water bodies in Mongolia, Canada, Sweden, the United States, and China and determined kappa coefficients and the overall precision. The performance of the classifier was compared with methods such as the normalized difference water index (NDWI), the modified normalized difference water index (MNDWI), the enhanced water index (EWI), the automated water extraction index (AWEI), and the land surface water index (LSWI). The classification accuracy of the TWI for all test sites is significantly higher than that of these indices that are commonly used classification methods. The overall precision of the TWI ranges between 95% and 97%. Moreover, the TWI is also effective in extracting flooded areas. Hence, the TWI can automatically extract different water bodies from Sentinel-2 data with high accuracy, which provides also a favorable analysis method for the study of droughts and flood disasters and for the general maintenance of water bodies in the future.
5

A Dredging Knowledge-Base Expert System for Pipeline Dredges with Comparison to Field Data

Wilson, Derek Alan 2010 December 1900 (has links)
A Pipeline Analytical Program and Dredging Knowledge{Base Expert{System (DKBES) determines a pipeline dredge's production and resulting cost and schedule. Pipeline dredge engineering presents a complex and dynamic process necessary to maintain navigable waterways. Dredge engineers use pipeline engineering and slurry transport principles to determine the production rate of a pipeline dredge system. Engineers then use cost engineering factors to determine the expense of the dredge project. Previous work in engineering incorporated an object{oriented expert{system to determine cost and scheduling of mid{rise building construction where data objects represent the fundamental elements of the construction process within the program execution. A previously developed dredge cost estimating spreadsheet program which uses hydraulic engineering and slurry transport principles determines the performance metrics of a dredge pump and pipeline system. This study focuses on combining hydraulic analysis with the functionality of an expert{system to determine the performance metrics of a dredge pump and pipeline system and its resulting schedule. Field data from the U.S. Army Corps of Engineers pipeline dredge, Goetz, and several contract daily dredge reports show how accurately the DKBES can predict pipeline dredge production. Real{time dredge instrumentation data from the Goetz compares the accuracy of the Pipeline Analytical Program to actual dredge operation. Comparison of the Pipeline Analytical Program to pipeline daily dredge reports shows how accurately the Pipeline Analytical Program can predict a dredge project's schedule over several months. Both of these comparisons determine the accuracy and validity of the Pipeline Analytical Program and DKBES as they calculate the performance metrics of the pipeline dredge project. The results of the study determined that the Pipeline Analytical Program compared closely to the Goetz eld data where only pump and pipeline hydraulics a ected the dredge production. Results from the dredge projects determined the Pipeline Analytical Program underestimated actual long{term dredge production. Study results identi ed key similarities and di erences between the DKBES and spreadsheet program in terms of cost and scheduling. The study then draws conclusions based on these ndings and o ers recommendations for further use.
6

The Spatial Relationship Between Septic System Failure and Environmental Factors in Washington Township, Marion County, Indiana

Hanson, Brian L. 04 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Underground septic systems thrive or fail based on the relationship with their local environment. This paper explores ways environmental variables such as soil type, tree roots, degree of slope, and impervious surfaces affect on-site wastewater treatment systems. It also discusses the effects each of these variables may have on a septic system, and the resulting impact a compromised system may have on the surrounding environment. This research focuses on an approximately 20 square mile area of central Washington Township in Marion County, Indiana. This area of central Indiana contains a large septic system owning population in a sampling of different environments such as wooded areas, hilly areas, and a variety of different soil types.

Page generated in 0.09 seconds