• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hypothalamic Regulation of Food Intake in Obese and Anorexic Avian Models

Yi, Jiaqing 14 June 2016 (has links)
Chickens from lines that have been divergently selected for either low (LWS) or high (HWS) body weight at 56 days of age for more than 57 generations serve as unique models to study eating disorders. The LWS have different severities of anorexia while all HWS become obese. Over the past decade our groups has demonstrated that these lines have differential food intake threshold responses to a range of intracerebroventricular (ICV) injected neurotransmitters. The major brain region regulating homeostatic regulation of appetite is the hypothalamus, and hence this dissertation was focused on understanding how the hypothalamus is different between LWS and HWS lines. Experiments 1 and 2 were performed as follows: whole hypothalamus as well as individual hypothalamic nuclei, respectively, were collected from 5 day-old chicks that had been fasted for 180 min or had free access to food. The hypothalamic nuclei included those primarily associated with appetite including the lateral hypothalamus, paraventricular nucleus (PVN), ventromedial hypothalamus, dorsomedial nucleus, and arcuate nucleus (ARC). Total RNA was isolated, reverse transcribed, and real time PCR performed. Hypothalamic expression of anorexigenic factors was greater in LWS than HWS, those factors including calcitonin, corticotropin-releasing factor receptor 1, leptin receptor, neuropeptide S, melanocortin receptor 3 (MC3R), and mesotocin. The gene expression data from individual hypothalamic nuclei revealed that mesotocin from the PVN may play an important role in the inhibition of appetite in the LWS. Experiment 3 was then designed to evaluate the effects of stress on food intake: besides the differences in hypothalamic gene expression between the lines, they also have different feeding responses when stressed: ICV injection of neuropeptide Y (0.2 nmol, NPY) did not increase food intake in LWS on day 5 after stress exposure. Experiment 4 was thus designed to study the molecular mechanisms underlying conditional feeding responses to exogenous NPY after stress in the LWS. The melanocortin system (AgRP and MC3R) changed in the hypothalamus after stress in the LWS, and hence may be responsible for the loss of responsiveness to exogenous NPY in stressed LWS. Experiment 5 was designed to evaluate whether hypothalamic differences exist at the protein level: label-free liquid chromatography coupled to tandem-mass spectrometry was used to measure the abundance of proteins in the hypothalamus. Hypothalamus was obtained from fed and 180 minute-fasted 5 day-old male LWS and HWS chicks. Proteins involved in energy metabolism were different between the lines. Differences were also found in proteins involved in GABA synthesis and uptake as well as protein ubiquitination. In conclusion, these results suggest that different feeding behaviors of LWS and HWS may be due to differences in gene and protein expression in the hypothalamus. / Ph. D.
2

Neurological - Molecular Interface in Food Intake and Metabolism in Birds and Mammals

Zhang, Wei 15 July 2014 (has links)
Obesity is a physiological consequence of dysregulated energy homeostasis. Energy homeostasis depends on energy intake and energy expenditure. Factors controlling the development of different adipose tissue deposits in the body and their distinct metabolic phenotypes are of considerable interest from both an agricultural and biomedical perspective. Following the literature review, the first chapter was devoted to studies designed to bridge the neural-adipose interface in understanding the relationship between appetite regulation and adipose tissue deposition in chickens, using chickens selected for low or high juvenile body weight as a model. Appetite regulation in the brain, particularly the hypothalamus, is the main factor governing food intake. Neuropeptide Y (NPY), known as a potent orexigenic factor, also promotes energy storage in fat in mammals and thus has a dual role in promoting energy intake via appetite regulation in the brain and energy storage/expenditure via direct effects on adipose tissue function. There have been no reports of the effects of NPY on adipose tissue function in any avian species. By exposing chicken preadipocytes to different concentration of NPY, we found that NPY enhances both proliferation and differentiation and thus appears to play a major role in chicken adipogenesis, an effect that has not yet been reported, to our knowledge. In the body weight selected chicken lines, we found that NPY and receptor sub-type expression was elevated in the abdominal fat of chickens from the high body weight chicken line and expression of these genes displayed heterosis in the reciprocal crosses of the parental lines as compared to both the high and low body weight selected lines. Intriguingly, expression of those same genes was greater in the low weight than high weight chickens in the hypothalamus. Hypothalamic transcriptomic profiling revealed that genes involved in serotonergic and dopaminergic systems may also play an important role in both appetite regulation and insulin-regulated energy homeostasis in the body weight chicken lines. Intracerebroventricular injection of serotonin in broiler chicks was associated with a dose and time dependent reduction in food intake that was coupled with the activation of the ventromedial hypothalamus and arcuate nucleus, as determined by c-fos immunoreactivity. The remainder of this dissertation project describes the effects of knocking down expression of a recently discovered transcription factor, ZBED6, on mouse preadipocyte proliferation and differentiation. The dissertation ends with a study using diet-induced porcine prepubertal obesity as a model to examine differences in adipokine gene expression between different fat depots from pigs that consumed diets that differed in carbohydrate composition. Overall, we conclude that both NPY and monoamines such as serotonin and dopamine are of importance in the regulation of energy balance in chickens. Moreover, we propose that NPY is a factor that mediates hypothalamus and adipose tissue crosstalk in chickens. An understanding of this system may provide a new avenue for the treatment of obesity and associated disease complications by re-orchestrating the neuronal outputs or adiposity inputs. This information may also be of value in developing strategies to improve feed conversion and meat yield in commercial broilers. / Ph. D.

Page generated in 0.0983 seconds