• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Production par fermentation et structures chimiques d'une famille de biosurfactants : les sophorolipides de Candida bombicola... /

Davila, Anne-Marie. January 1900 (has links)
Th. doct.--Biol. cellulaire et microbiol.--Aix-Marseille 1, 1993. / 1993 d'après la déclaration de dépôt légal. Bibliogr. p. 143-151.
2

Zweistufige kontinuierliche Prozeßführung zur Herstellung von Sophoroselipiden mit Candida bombicola ATCC 22214 /

Carrette, Arnd. January 1995 (has links) (PDF)
Zugl.: Braunschweig, Universiẗat, Diss., 1995.
3

Biotechnologická produkce sophorolipidů / Biotechnological production of sophorolipids

Šimšová, Veronika January 2019 (has links)
This diploma thesis deals with the microbial production of sophorolipids by the Starmerella genus yeasts. The theoretical part of the thesis includes general characteristics of biosurfactants with the focus on sophorolipids. There are described the options of biotechnological production of sophorolipids and fields of their possible applications. Furthermore, the theoretical part deals with the describtion of Starmerella bombicola yeast, which is often used for biotechnological production of sophorolipids. Six strains of the Starmerella genus were cultured in the basic medium suitable for sophorolipid produsction. The amount of produced sophorolipids was tested by the emulsification capacity assay, solubilization of crystalline anthracene assay, measuring the surface tension by the Du-Noüy-Ring method and determination of the sophorolipid concentration by extraction with ethyl acetate. The purity of the extracted sophorolipids was inspected by the Fourier Transform infrared spectrosopy (FT-IR) Based on the results, the Starmerella bombicola CBS 6009 and the Starmerella anomalae CBS 14178 strains were studied in greater detail. They were cultured in several production media of different composition and the effect of the individual components on the ability of the sophorolipid production was monitored. Based on the results, it was evaluated that the composition of the medium has a great influence on the production ability of the strains. The highest production rate of sophorolipids was achieved in the basic production medium and so was in the medium containing molasses and Indian waste oil. The cultivation mode has great effect on the sophotolipid production rate. It has been found that when cultured in a bioreactor, the strains produced sophorolipids in a larger amount and of a different quality than in the shaker flasks.
4

SOPHOROLIPID PRODUCTION FROM LIGNOCELLULOSIC BIOMASS FEEDSTOCKs

Samad, Abdul 01 December 2015 (has links)
The present study investigated the feasibility of production of sophorolipids (SLs) using yeast Candida bombicola grown on hydrolysates derived lignocellulosic feedstock either with or without supplementing oil as extra carbon source. Several researchers have reported using pure sugars and various oil sources for producing SLs which makes them expensive for scale-up and commercial production. In order to make the production process truly sustainable and renewable, we used feedstocks such as sweet sorghum bagasse, corn fiber and corn stover. Without oil supplementation, the cell densities at the end of day-8 was recorded as 9.2, 9.8 and 10.8 g/L for hydrolysate derived from sorghum bagasse, corn fiber, and corn fiber with the addition of yeast extract (YE) during fermentation, respectively. At the end of fermentation, the SL concentration was 3.6 g/L for bagasse and 1.0 g/L for corn fiber hydrolysate. Among the three major sugars utilized by C. bombicola in the bagasse cultures, glucose was consumed at a rate of 9.1 g/L-day; xylose at 1.8 g/L-day; and arabinose at 0.98 g/L-day. With the addition of soybean oil at 100 g/L, cultures with bagasse hydrolysates, corn fiber hydrolysates and standard medium had a cell content of 7.7 g/L; 7.9 g/L; and 8.9 g/L, respectively after 10 days. The yield of SLs from bagasse hydrolysate was 84.6 g/L and corn fiber hydrolysate was15.6 g/L. In the same order, the residual oil in cultures with these two hydrolysates was 52.3 g/L and 41.0 g/L. For this set of experiment; in the cultures with bagasse hydrolysate; utilization rates for glucose, xylose and arabinose was recorded as 9.5, 1.04 and 0.08 g/L-day respectively. Surprisingly, C. bombicola consumed all monomeric sugars and non-sugar compounds in the hydrolysates and cultures with bagasse hydrolysates had higher yield of SLs than those from a standard medium which contained pure glucose at the same concentration. Based on the SL concentrations and considering all sugars consumed, the yield of SLs was 0.55 g/g carbon (sugars plus oil) for cultures with bagasse hydrolysates. Further, SL production was investigated using sweet sorghum bagasse and corn stover hydrolysates derived from different pretreatment conditions. For the former and latter sugar sources, yellow grease or soybean oil was supplemented at different doses to enhance sophorolipid yield. 14-day batch fermentation on bagasse hydrolysates with 10, 40 and 60 g/L of yellow grease had cell densities of 5.7 g/L, 6.4 g/L and 7.8 g/L, respectively. The study also revealed that the yield of SLs on bagasse hydrolysate decreased from 0.67 to 0.61 and to 0.44 g/g carbon when yellow grease was dosed at 10, 40 and 60 g/L. With aforementioned increasing yellow grease concentration, the residual oil left after 14 days was recorded as 3.2 g/L, 8.5 g/L and 19.9 g/L. For similar experimental conditions, the cell densities observed for corn stover hydrolysate combined with soybean oil at 10, 20 and 40 g/L concentration were 6.1 g/L, 5.9 g/L, and 5.4 g/L respectively. Also, in the same order of oil dose supplemented, the residual oil recovered after 14-day was 8.5 g/L, 8.9 g/L, and 26.9 g/L. Corn stover hydrolysate mixed with the 10, 20 and 40 g/L soybean oil, the SL yield was 0.19, 0.11 and 0.09 g/g carbon. Overall, both hydrolysates supported cell growth and sophorolipid production. The results from this research show that hydrolysates derived from the different lignocellulosic biomass feedstocks can be utilized by C. bombicola to achieve substantial yields of SLs. Based upon the results revealed by several batch-stage experiments, it can be stated that there is great potential for scaling up and industrial scale production of these high value products in future.

Page generated in 0.039 seconds