• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The conjunctive use of bonded repairs and crack growth retardation techniques

Kieboom, Orio Terry, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2007 (has links)
In an attempt to find a way of improving the damage tolerance of composite bonded repairs to metallic aircraft structures, the effect of using conventional crack growth retardation techniques in conjunction with bonded repairs was experimentally investigated. Hence, an experimental test program was set up to determine whether fatigue crack growth under bonded repairs is retarded further by giving the crack to be repaired a crack growth retardation treatment prior to repair patch application. In addition, it was set up to determine the influence of a bonded repair on the effectiveness of a crack growth retardation method. Centrally cracked aluminium plates were used. Stop drilling followed by cold hole expansion and the application of single overloads were selected as retardation treatments. Two patch materials were considered; boron/epoxy and Glare 2. Further test variables were the aluminium alloy and the plate thickness. Fatigue testing was carried out under constant amplitude loading and baseline results were determined first. In addition to optically monitoring the crack growth, local and global out-of-plane deformations were visualised with holographic interferometry and shadow moire??. Furthermore, the stress intensity factors under the repair patch were examined with strain gauges and measurement of the central crack opening displacement. Disbonds and fracture surfaces were studied after residual strength tests. The crack growth results obtained showed that retardation treatments decrease crack growth rates under a repair patch and that the effectiveness of a retardation treatment is increased by the patch. Although identical crack growth rates were observed under boron/epoxy and Glare 2 patches, the reinitiation period after the retardation treatment lasted longer when Glare 2 patches were applied. Analytical predictions of the extent of retardation based on existing models showed that the conjunctive effect of retardation treatments and bonded repairs was underestimated. A sustained reduction in crack growth rates was observed under bonded repairs with a prior overload retardation treatment. It was concluded that the damage tolerance of bonded repairs is increased by the application of a crack growth retardation treatment because the crack growth is retarded further. These findings indicate that the range of cracks in aircraft for which bonded repairs can be considered is expanded and that economic benefits can be obtained.
2

The conjunctive use of bonded repairs and crack growth retardation techniques

Kieboom, Orio Terry, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2007 (has links)
In an attempt to find a way of improving the damage tolerance of composite bonded repairs to metallic aircraft structures, the effect of using conventional crack growth retardation techniques in conjunction with bonded repairs was experimentally investigated. Hence, an experimental test program was set up to determine whether fatigue crack growth under bonded repairs is retarded further by giving the crack to be repaired a crack growth retardation treatment prior to repair patch application. In addition, it was set up to determine the influence of a bonded repair on the effectiveness of a crack growth retardation method. Centrally cracked aluminium plates were used. Stop drilling followed by cold hole expansion and the application of single overloads were selected as retardation treatments. Two patch materials were considered; boron/epoxy and Glare 2. Further test variables were the aluminium alloy and the plate thickness. Fatigue testing was carried out under constant amplitude loading and baseline results were determined first. In addition to optically monitoring the crack growth, local and global out-of-plane deformations were visualised with holographic interferometry and shadow moire??. Furthermore, the stress intensity factors under the repair patch were examined with strain gauges and measurement of the central crack opening displacement. Disbonds and fracture surfaces were studied after residual strength tests. The crack growth results obtained showed that retardation treatments decrease crack growth rates under a repair patch and that the effectiveness of a retardation treatment is increased by the patch. Although identical crack growth rates were observed under boron/epoxy and Glare 2 patches, the reinitiation period after the retardation treatment lasted longer when Glare 2 patches were applied. Analytical predictions of the extent of retardation based on existing models showed that the conjunctive effect of retardation treatments and bonded repairs was underestimated. A sustained reduction in crack growth rates was observed under bonded repairs with a prior overload retardation treatment. It was concluded that the damage tolerance of bonded repairs is increased by the application of a crack growth retardation treatment because the crack growth is retarded further. These findings indicate that the range of cracks in aircraft for which bonded repairs can be considered is expanded and that economic benefits can be obtained.
3

Free Flexural (or Bending) Vibrations Analysis Of Doubly Stiffened, Composite, Orthotropic And/or Isotropic Base Plates And Panels (in Aero-structural Systems)

Cil, Kursad 01 September 2003 (has links) (PDF)
In this Thesis, the problem of the Free Vibrations Analysis of Doubly Stiffened Composite, Orthotropic and/or Isotropic, Base Plates or Panels (with Orthotropic Stiffening Plate Strips) is investigated. The composite plate or panel system is made of an Orthotropic and/or Isotropic Base Plate stiffened or reinforced by adhesively bonded Upper and Lower Orthotropic Stiffening Plate Strips. The plates are assumed to be the Mindlin Plates connected by relatively very thin adhesive layers. The general problem under study is considered in terms of three problems, namely Main PROBLEM I Main PROBLEM II and Main PROBLEM III. The theoretical formulation of the Main PROBLEMS is based on a First Order Shear Deformation Plate Theory (FSDPT) that is, in this case, the Mindlin Plate Theory. The entire composite system is assumed to have simple supports along the two opposite edges so that the Classical Levy&#039 / s Solutions can be applied in that direction. Thus, the transverse shear deformations and the rotary moments of inertia of plates are included in the formulation. The very thin, yet elastic deformable adhesive layers are considered as continua with transverse normal and shear stresses. The damping effects in the plates and the adhesive layers are neglected. The sets of the systems of equations of the Mindlin Plate Theory are reduced to a set of the Governing System of First Order Ordinary Differential Equations in the state vector form. The sets of the Governing System for each Main PROBLEM constitute a Two-Point Boundary Value Problem in the y-direction which is taken along the length of the plates. Then, the system is solved by the Modified Transfer Matrix Method (with Interpolation Polynomials and/or Chebyshev Polynomials)which is a relatively semi-analytical and numerical technique. The numerical results and important parametric studies of the natural modes and the corresponding frequencies of the composite system are presented.

Page generated in 0.0554 seconds