1 |
Design and production of polymer based miniaturised bio-analytical devicesGarst, Sebastian, n/a January 2007 (has links)
The aim to provide preventive healthcare and high quality medical diagnostics and
treatment to an increasingly ageing population caused a rapidly increasing demand for
point-of-care diagnostic devices. Disposables have an advantage over re-usable units
as cross-contamination is avoided, no cleaning and sterilising of equipment is required
and devices can be used out of centralised laboratories. To remain cost-effective, costs
for disposables should be kept low. This makes polymer materials an obvious choice.
One method for the realisation of fluidic micro devices is the stacking of several
layers of microstructured polymer films. Reel-to-reel manufacturing is a promising
technique for high-volume manufacturing of disposable polymer bio-analytical
devices. Polyethylene terephthalate (PET) and cycloolefin copolymer (COC) were
selected as suitable polymer substrate materials and polydimethyl siloxane (PDMS) as
membrane layer.
Bonding of polymer films with the help of adhesives carries the risk of channel
blocking. Despite this drawback, no other method of bonding PDMS to a structural
layer could be identified. Bonding with solvents avoids channel blocking issues, but
adversely affects biocompatibility.
Thermal diffusion processes enable bonding of COC and PET without the use of any
auxiliary material. The extensive process times requires for thermal diffusion bonding
can be considerably shortened by pre-treating the material with plasma or UV
exposure. Welding with the use of a laser energy absorbing dye was demonstrated to
be particularly suitable for selective bonding around channels and reservoirs.
None of the assessed bonding methods provide a generic solution to all bonding
applications. Instead, the selection of an appropriate technique depends on the
intended application and the required level of biocompatibility. Since this selection
has implications on the feasibility and reliability of microfluidic structures on the
device, design rules which ensure design for production have to be established and
followed.
|
2 |
Retrofit of Reinforced Concrete Beams using Externally Bonded and Unbonded Fiber Metal LaminateCross, Jack Kirby 02 January 2025 (has links)
This research investigates the flexural behavior of reinforced concrete (RC) beams retrofitted with fiber metal laminate (FML), an advanced hybrid material composed of alternating layers of metal and fiber-reinforced polymer (FRP) composites bonded through a thermoplastic or thermoset polymeric matrix. While FRP composites are commonly used for structural retrofits, their brittle failure mode, due to the linear elastic behavior of the fibers that cannot deform plastically, limits their effectiveness in applications requiring ductility. To address the drawbacks associated with FRP, this project proposes FML as a potential alternative.
Flexural testing was conducted on seven RC beams with different configurations of FML and FRP under four-point bending. The goal of the project was finding an ideal retrofit for the RC beam that increased the peak load without a sacrificing the ductility. The beams, which were simply supported, were subjected to two point loads in order to assess their complete load-deformation behavior. Displacements and applied loads were measured at the midspan, and strain data wasrecorded along the length of the retrofits. Four beams were retrofitted with FML, two with FRP, and one served as a control specimen that did not have a retrofit. In order to prevent a premature debonding failure between the RC beam and retrofit, this study also explored different bonding methods: hybrid bonding and unbonded anchorage configurations. Four of the retrofitted beams had a hybrid bonded anchorage configuration and two had an unbonded anchorage configuration.
Analytical modeling was performed to predict the behavior of RC beams with various retrofit configurations and bonding types. The modeling procedure for fully bonded retrofits followed the prescribed method in ACI 440.2R-17 that assumes full strain compatibility between the RC beam and retrofit. Due to the lack of strain compatibility for unbonded retorifts, an analytical procedure was developed to generate the moment-curvature response and is reported in Appendix D. The modeling techniques accurately predicted the load-deformation behavior observed in the experiments.
The results indicated that FML is an appropriate retrofit material for RC beams, with beam behavior highly dependent on the fiber orientation within the FML. RC Beams retrofitted with fully bonded, unidirectional fibers experienced the highest strength gains but exhibited decreased ductility. In contrast, beams retrofitted with fully bonded, off-axis fibers showed moderate strength gains without a reduction in ductility. Unbonded retrofits were effective in increasing both the strength and ductility of the beams, displaying performance similar to the fully bonded retrofits fiber orientation.
This study demonstrates the potential of FML as a retrofit material that offers a balance between strength enhancement and ductility. The main findings highlights the significance of fiber orientation and bonding methods in optimizing the performanae of RC beam retrofits. / Master of Science / This project explored methods to strengthen reinforced concrete (RC) beams using fiber metal laminate (FML), a material created by layering metal sheets with fiber-reinforced polymers (FRP). While FRP is commonly utilized for structural retrofits, it has significant deficiencies: its fibers are brittle and lack ductility compared to metals. FML addresses these issues by combining metals with FRP, resulting in a more ductile and reliable strengthening solution.
Seven RC beams were tested by applying two-point loads near the center until failure occurred. Four of these beams were retrofitted with FML, two with FRP, and one remained unaltered as a control specimen. To prevent premature debonding failure between the RC beam and the retrofit, different bonding methods were explored: four retrofitted beams had the retrofit materials fully bonded using hybrid bonded anchorage configurations, while two featured unbonded anchorage configurations. During testing, midspan displacement, applied loads, and strain along the retrofitted areas were measured.
Analytical modeling was employed to predict the behavior of RC beams with various retrofit configurations and bonding types. For the fully bonded retrofits, established guidelines from ACI 440.2R-17 were adhered to, assuming full strain compatibility between the RC beam and retrofit. Due to the lack of strain compatibility for unbonded retrofits, a new analytical procedure was developed to generate the moment-curvature response, detailed in Appendix D. These modeling techniques accurately predicted the load-deformation behavior observed in the experiments.
The results demonstrated that FML is an effective material for reinforcing RC beams. Performance was largely influenced by the fiber orientation within the FML. Beams reinforced with FML having fibers aligned in one direction exhibited the greatest strength gains but reduced ductility. Conversely, beams with fibers arranged at angles achieved moderate strength increases without compromising ductility. Unbonded retrofits were also effective, enhancing both the strength and ductility of the beams in a manner consistent with fiber orientation trends.
In summary, FML offers a promising method for retrofitting RC beams by balancing increased strength with maintained ductility. Fiber orientation and bonding methods are critical factors in optimizing the performance of the strengthened beams.
|
3 |
Technologie výroby dveří kolejových vozidel pomocí nových lepících systémů / Manufacturing technology of rail vehicle by new adhesive systemsTesař, Petr January 2011 (has links)
This master´s thesis deals with the bonding process, which is the dominant technology of the production of door leaves for railway vehicles. Following the necessary study of the basic essence of bonded joints the thesis further introduces the individual construction options of this product. The essential part of the thesis is represented by presentation of the achieved results of the testing of individual selected types of adhesives. On the basis of these results the most suitable type and supplier of industrial adhesive is selected.
|
Page generated in 0.0954 seconds