1 |
Fast Static Learning and Inductive Reasoning with Applications to ATPG ProblemsDsouza, Michael Dylan 03 March 2015 (has links)
Relations among various nodes in the circuit, as captured by static and inductive invariants, have shown to have a positive impact on a wide range of EDA applications. Techniques such as boolean constraint propagation for static learning and assume-then-verify approach to reason about inductive invariants have been possible due to efficient SAT solvers. Although a significant amount of research effort has been dedicated to the development of effective invariant learning techniques over the years, the computation time for deriving powerful multi-node invariants is still a bottleneck for large circuits. Fast computation of static and inductive invariants is the primary focus of this thesis. We present a novel technique to reduce the cost of static learning by intelligently identifying redundant computations that may not yield new invariants, thereby achieving significant speedup. The process of inductive invariant reasoning relies on the assume-then-verify framework, which requires multiple iterations to complete, making it infeasible for cases with a large set of multi-node invariants. We present filtering techniques that can be applied to a diverse set of multi-node invariants to achieve a significant boost in performance of the invariant checker. Mining and reasoning about all possible potential multi-node invariants is simply infeasible. To alleviate this problem, strategies that narrow down the focus on specific types of powerful multi-node invariants are also presented. Experimental results reflect the promise of these techniques. As a measure of quality, the invariants are utilized for untestable fault identification and to constrain ATPG for path delay fault testing, with positive results. / Master of Science
|
Page generated in 0.1094 seconds