• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ELUCIDATING THE BIOCHEMICAL WIZARDRY OF TRITERPENE METABOLISM IN <i>BOTROYCOCCUS BRAUNII</i>

Niehaus, Thomas Daniel 01 January 2011 (has links)
B. braunii is a green alga that has attracted attention as a potential renewable fuel source due to its high oil content and the archeological record of its unique contribution to oil and coal shales. Three extant chemotypes of B. braunii have been described, namely race A, race B, and race L, which accumulate alkadienes and alkatrienes, botryococcene and squalene and their methylated derivatives, and lycopadiene, respectively. The methylated triterpenes, particularly botryococcenes, produced by race B can be efficiently converted to high quality combustible fuels and other petrochemicals; however, botryococcene biosynthesis has remained enigmatic. It has been suggested that botryococcene biosynthesis could resemble that of squalene, arising from an initial condensation of two molecules of farnesyl diphosphate (FPP) to form pre-squalene diphosphate (PSPP), which then undergoes a reductive rearrangement to form squalene, or in an alternative reductive rearrangement, botryococcene. Based on the proposed similarities, we predicted that a botryococcene synthase would resemble squalene synthase and hence, isolated squalene synthase-like genes from B. braunii race B. While B. braunii does harbor at least one typical squalene synthase, none of the other three squalene synthase-like (SSL) genes encode for botryococcene biosynthesis directly. SSL-1 catalyzes the biosynthesis of PSPP and SSL-2 the biosynthesis of bisfarnesyl ether and to a lesser extent squalene, while SSL-3 does not appear able to directly utilize FPP as a substrate. However, when SSL-1 is combined with either SSL-2 or SSL-3, in vivo and in vitro, robust squalene or botryococcene biosynthesis was observed, respectively. These findings were unexpected because squalene synthase, an ancient and likely progenitor to the other Botryococcus triterpene synthases, catalyzes a two-step reaction within a single enzyme unit without intermediate release, yet in B. braunii, these activities appear to have separated and evolved inter-dependently for specialized triterpene production. Expression of various configurations of the SSL genes in TN-7 yeast demonstrates that botryococcene can be efficiently produced in a heterologous host. Additionally, three triterpene methyltransferase (TMTs) were isolated which efficiently catalyze the transfer of a methyl group from S-adenosyl methionine (SAM) to either squalene (TMT-1 and TMT-2) or botryococcene (TMT-3) in vivo and in vitro. Co-expression of the various TMT genes with either squalene synthase or botryococcene synthase in TN-7 yeast resulted in the accumulation of C31 and C32 methyl derivatives of squalene or botryococcene, demonstrating their potential for heterologous production. The methylation sites were determined by NMR spectroscopy to be identical to C31 and C32 methyl-derivatives of squalene or botryococcene observed in B. braunii race B. Expression studies of various heterologous squalene synthase genes in S. cerevisiae corroborated an earlier but surprising observation reported in the literature. While the squalene synthase gene of S. cerevisiae was able to complement an erg9 (squalene synthase) knockout in yeast, squalene synthase genes from plants and animals were not. Chemical profiles revealed that squalene accumulated to significant levels in yeast expressing the squalene synthase of plant, animal, or S. cerevisiae. This suggested that it was not the ability of these heterologous synthase enzymes to produce squalene, but their inability to feed squalene into the native sterol biosynthetic pathway that prevented them from restoring normal ergosterol biosynthesis in S. cerevisiae. By examining the ability of chimera squalene synthase enzymes to complement the erg9 mutation, a discrete sequence of amino acids near the C-terminus of the enzyme was identified which is necessary and sufficient for allowing any squalene synthase to restore normal sterol metabolism.
2

Molecular and Biochemical Characterization of Hydrocarbon Production in the Green Microalga Botryococcus braunii

Weiss, Taylor Leigh 2012 August 1900 (has links)
Botryococcus braunii (Chlorophyta, Botryococcaceae) is a colony-forming green microalga that produces large amounts of liquid hydrocarbons, which can be converted into transportation fuels. While B. braunii has been well studied for the chemistry of the hydrocarbon production, very little is known about the molecular biology of B. braunii. As such, this study developed both apparatus and techniques to culture B. braunii for use in the genetic and biochemical characterization. During genetic studies, the genome size was determined of a representative strain of each of the three races of B. braunii, A, B, and L, that are distinguished based on the type of hydrocarbon each produces. Flow cytometry analysis indicates that the A race, Yamanaka strain, of B. braunii has a genome size of 166.0 +/- 0.4 Mb, which is similar to the B race, Berkeley strain, with a genome size of 166 +/- 2.2 Mb, while the L race, Songkla Nakarin strain, has a substantially larger genome size at 211.3 +/- 1.7 Mb. Phylogenetic analysis with the nuclear small subunit (18S) rRNA and actin genes were used to classify multiple strains of A, B, and L races. These analyses suggest that the evolutionary relationship between B. braunii races is correlated with the type of liquid hydrocarbon they produce. Biochemical studies of B. braunii primarily focused on the B race, because it uniquely produces large amounts of botryococcenes that can be used as a fuel for internal combustion engines. C30 botryococcene is metabolized by methylation to generate intermediates of C31, C32, C33, and C34. Raman spectroscopy was used to characterize the structure of botryococcenes. The spectral region from 1600?1700 cm^-1 showed v(C=C) stretching bands specific for botryococcenes. Distinct botryococcene Raman bands at 1640 and 1647 cm^-1 were assigned to the stretching of the C=C bond in the botryococcene branch and the exomethylene C=C bonds produced by the methylations, respectively. A Raman band at 1670 cm^-1 was assigned to the backbone C=C bond stretching. Finally, confocal Raman microspectroscopy was used to map the presence and location of methylated botryococcenes within a living colony of B. braunii cells.
3

ENGINEERING TRITERPENE METABOLISM IN TOBACCO

Jiang, Zuodong 01 January 2015 (has links)
Terpenes comprise a large diverse class of natural products and many of them attract interest because of their physiological function, therapeutic and industrial values. Triterpene oils including squalene (C30), botrycococcene (C30) and their methylated derivatives (C31-C37) generated by the green algae Botryococcus braunii race B, which have recently received significant attention because of their utility for advanced biofuels. However, the slow growth habit of B. braunii makes it impractical as a robust biofuel production system. In this thesis, we firstly evaluated the potential of generating high levels of triterpene (C30) production in tobacco plants by diverting carbon flux from cytosolic MVA pathway or plastidic MEP pathway by overexpressing avian farnesyl diphosphate synthase along with triterpene synthase targeted to the cytoplasm or the chloroplast of cells. Up to 1,000 µg/g fresh weight of squalene and 544 µg/g fresh weight of botryococcene was achieved in our transgenic plants with this metabolism direct to the chloroplasts, which is about approximately 100-times greater than that accumulating in the plants engineered for cytosolic production. To test if methylated triterpenes can be produced in tobacco, we also engineered triterpene methyltransferases (TMTs) into wild type plants and transgenic tobacco plants selected for high level triterpene accumulation. We observed that up to 91% of the total triterpene content was converted to methylated forms (C31, C32) by targeting the TMTs to the chloroplasts of transgenic plants, whereas only 4-14% of total triterpenes were methylated when TMTs were directed to the cytoplasm. Select transgenic lines were growing in field studies from 2011 to 2014 to evaluate their physiological performance under field conditions. Surprisingly, the field studies suggested that the growth and agronomic performance of the transgenic lines accumulating squalene were not compromised, while those accumulating high levels of botryococcene were only 72%-76% as tall, had about 59%-75% of the leaf area, and about 55%-75% of the biomass as wild type plants. Yet, these transgenic plants had photosynthetic capacity equal to the wild type plants.
4

Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)*

Molnar, Istvan, Lopez, David, Wisecaver, Jennifer, Devarenne, Timothy, Weiss, Taylor, Pellegrini, Matteo, Hackett, Jeremiah January 2012 (has links)
BACKGROUND:Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. Biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga that compete for photosynthetic carbon and energy.RESULTS:A de novo assembly of 1,334,609 next-generation pyrosequencing reads form the Showa strain of the B race of B. braunii yielded a transcriptomic database of 46,422 contigs with an average length of 756 bp. Contigs were annotated with pathway, ontology, and protein domain identifiers. Manual curation allowed the reconstruction of pathways that produce terpenoid liquid hydrocarbons from primary metabolites, and pathways that divert photosynthetic carbon into tetraterpenoid carotenoids, diterpenoids, and the prenyl chains of meroterpenoid quinones and chlorophyll. Inventories of machine-assembled contigs are also presented for reconstructed pathways for the biosynthesis of competing storage compounds including triacylglycerol and starch. Regeneration of S-adenosylmethionine, and the extracellular localization of the hydrocarbon oils by active transport and possibly autophagy are also investigated.CONCLUSIONS:The construction of an annotated transcriptomic database, publicly available in a web-based data depository and annotation tool, provides a foundation for metabolic pathway and network reconstruction, and facilitates further omics studies in the absence of a genome sequence for the Showa strain of B. braunii, race B. Further, the transcriptome database empowers future biosynthetic engineering approaches for strain improvement and the transfer of desirable traits to heterologous hosts.

Page generated in 0.0419 seconds