• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inclusion Diagrams for Classes of Deterministic Bottom-up Tree-to-Tree-Series Transformations

Maletti, Andreas 12 November 2012 (has links) (PDF)
In this paper we investigate the relationship between classes of tree-to-tree-series (for short: t-ts) and o-tree-to-tree-series (for short: o-t-ts) transformations computed by restricted deterministic bottom-up weighted tree transducers (for short: deterministic bu-w-tt). Essentially, deterministic bu-w-tt are deterministic bottom-up tree series transducers [EFV02, FV03, ful, FGV04], but the former are de ned over monoids whereas the latter are de ned over semirings and only use the multiplicative monoid thereof. In particular, the common restrictions of non-deletion, linearity, totality, and homomorphism [Eng75] can equivalently be de ned for deterministic bu-w-tt. Using well-known results of classical tree transducer theory (cf., e.g., [Eng75, Fül91]) and also new results on deterministic bu-w-tt, we order classes of t-ts and o-t-ts transformations computed by restricted deterministic bu-w-tt by set inclusion. More precisely, for every commutative monoid we completely specify the inclusion relation of the classes of t-ts and o-t-ts transformations for all sensible combinations of restrictions by means of inclusion diagrams.
2

Inclusion Diagrams for Classes of Deterministic Bottom-up Tree-to-Tree-Series Transformations

Maletti, Andreas 12 November 2012 (has links)
In this paper we investigate the relationship between classes of tree-to-tree-series (for short: t-ts) and o-tree-to-tree-series (for short: o-t-ts) transformations computed by restricted deterministic bottom-up weighted tree transducers (for short: deterministic bu-w-tt). Essentially, deterministic bu-w-tt are deterministic bottom-up tree series transducers [EFV02, FV03, ful, FGV04], but the former are de ned over monoids whereas the latter are de ned over semirings and only use the multiplicative monoid thereof. In particular, the common restrictions of non-deletion, linearity, totality, and homomorphism [Eng75] can equivalently be de ned for deterministic bu-w-tt. Using well-known results of classical tree transducer theory (cf., e.g., [Eng75, Fül91]) and also new results on deterministic bu-w-tt, we order classes of t-ts and o-t-ts transformations computed by restricted deterministic bu-w-tt by set inclusion. More precisely, for every commutative monoid we completely specify the inclusion relation of the classes of t-ts and o-t-ts transformations for all sensible combinations of restrictions by means of inclusion diagrams.

Page generated in 0.0624 seconds