Spelling suggestions: "subject:"boundary harnack"" "subject:"boundary zarnack""
1 |
Boundary Behavior of p-Laplace Type EquationsAvelin, Benny January 2013 (has links)
This thesis consists of six scientific papers, an introduction and a summary. All six papers concern the boundary behavior of non-negative solutions to partial differential equations. Paper I concerns solutions to certain p-Laplace type operators with variable coefficients. Suppose that u is a non-negative solution that vanishes on a part Γ of an Ahlfors regular NTA-domain. We prove among other things that the gradient Du of u has non-tangential limits almost everywhere on the boundary piece Γ, and that log|Du| is a BMO function on the boundary. Furthermore, for Ahlfors regular NTA-domains that are uniformly (N,δ,r0)-approximable by Lipschitz graph domains we prove a boundary Harnack inequality provided that δ is small enough. Paper II concerns solutions to a p-Laplace type operator with lower order terms in δ-Reifenberg flat domains. We prove that the ratio of two non-negative solutions vanishing on a part of the boundary is Hölder continuous provided that δ is small enough. Furthermore we solve the Martin boundary problem provided δ is small enough. In Paper III we prove that the boundary type Riesz measure associated to an A-capacitary function in a Reifenberg flat domain with vanishing constant is asymptotically optimal doubling. Paper IV concerns the boundary behavior of solutions to certain parabolic equations of p-Laplace type in Lipschitz cylinders. Among other things, we prove an intrinsic Carleson type estimate for the degenerate case and a weak intrinsic Carleson type estimate in the singular supercritical case. In Paper V we are concerned with equations of p-Laplace type structured on Hörmander vector fields. We prove that the boundary type Riesz measure associated to a non-negative solution that vanishes on a part Γ of an X-NTA-domain, is doubling on Γ. Paper VI concerns a one-phase free boundary problem for linear elliptic equations of non-divergence type. Assume that we know that the positivity set is an NTA-domain and that the free boundary is a graph. Furthermore assume that our solution is monotone in the graph direction and that the coefficients of the equation are constant in the graph direction. We prove that the graph giving the free boundary is Lipschitz continuous.
|
2 |
Boundary Estimates for Solutions to Parabolic EquationsSande, Olow January 2016 (has links)
This thesis concerns the boundary behavior of solutions to parabolic equations. It consists of a comprehensive summary and four scientific papers. The equations concerned are different generalizations of the heat equation. Paper I concerns the solutions to non-linear parabolic equations with linear growth. For non-negative solutions that vanish continuously on the lateral boundary of an NTA cylinder the following main results are established: a backward Harnack inequality, the doubling property for the Riesz measure associated with such solutions, and the Hölder continuityof the quotient of two such solutions up to the boundary. Paper 2 concerns the solutions to linear degenerate parabolic equations, where the degeneracy is controlled by a Muckenhoupt weight of class 1+2/n. For non-negative solutions that vanish continuously on the lateral boundary of an NTA cylinder the following main results are established: a backward Harnack inequality, the doubling property for the parabolic measure, and the Hölder continuity of the quotient of two such solutions up to the boundary. Paper 3 concerns a fractional heat equation. The first main result is that a solution to the fractional heat equation in Euclidean space of dimension n can be extended as a solution to a certain linear degenerate parabolic equation in the upper half space of dimension n+1. The second main result is the Hölder continuity of quotients of two non-negative solutions that vanish continuously on the latteral boundary of a Lipschitz domain. Paper 4 concerns the solutions to uniformly parabolic linear equations with complex coefficients. The first main result is that under certain assumptions on the opperator the bounds for the single layer potentials associated to the opperator are bounded. The second main result is that these bounds always hold if the opperator is realvalued and symmetric.
|
3 |
Problemas variacionais de fronteira livre com duas fases e resultados do tipo PhragmÃn-Lindelof regidos por equaÃÃes elÃpticas nÃo lineares singulares/degeneradas / Variational problems with free boundary of two phases and results of PhragmÃn-Lindelof type governed by natural nonlinear elliptic equations/degenerate / Problemas variacionais de fronteira livre com duas fases e resultados do tipo PhragmÃn-Lindelof regidos por equaÃÃes elÃpticas nÃo lineares singulares/degeneradas / Variational problems with free boundary of two phases and results of PhragmÃn-Lindelof type governed by natural nonlinear elliptic equations/degenerateJosà Ederson Melo Braga 06 June 2015 (has links)
Neste trabalho de tese discutimos resultados recentes sobre a regularidade e propriedades geomÃtricas de soluÃÃes variacionais de problemas de fronteira livre de duas fases regidos por equaÃÃes elÃpticas nÃo lineares degeneradas/singulares. Discutimos tambÃm resultados do tipo PhragmÃm-Lindelof para tais equaÃÃes classificando essas soluÃÃes em semi-espaÃos. / Neste trabalho de tese discutimos resultados recentes sobre a regularidade e propriedades geomÃtricas de soluÃÃes variacionais de problemas de fronteira livre de duas fases regidos por equaÃÃes elÃpticas nÃo lineares degeneradas/singulares. Discutimos tambÃm resultados do tipo PhragmÃm-Lindelof para tais equaÃÃes classificando essas soluÃÃes em semi-espaÃos. / In this work of thesis we discuss recents results on the regularity and geometric properties of variational solutions of two phase free boundary problems governed by singular/degenerate nonlinear elliptic equations. We also discuss PhragmÃn-Lindelof type results for such equations classifying those solutions in half spaces. / In this work of thesis we discuss recents results on the regularity and geometric properties of variational solutions of two phase free boundary problems governed by singular/degenerate nonlinear elliptic equations. We also discuss PhragmÃn-Lindelof type results for such equations classifying those solutions in half spaces.
|
4 |
Studies of the Boundary Behaviour of Functions Related to Partial Differential Equations and Several Complex VariablesPersson, Håkan January 2015 (has links)
This thesis consists of a comprehensive summary and six scientific papers dealing with the boundary behaviour of functions related to parabolic partial differential equations and several complex variables. Paper I concerns solutions to non-linear parabolic equations of linear growth. The main results include a backward Harnack inequality, and the Hölder continuity up to the boundary of quotients of non-negative solutions vanishing on the lateral boundary of an NTA cylinder. It is also shown that the Riesz measure associated with such solutions has the doubling property. Paper II is concerned with solutions to linear degenerate parabolic equations, where the degeneracy is controlled by a weight in the Muckenhoupt class 1+2/n. Two main results are that non-negative solutions which vanish continuously on the lateral boundary of an NTA cylinder satisfy a backward Harnack inequality and that the quotient of two such functions is Hölder continuous up to the boundary. Another result is that the parabolic measure associated to such equations has the doubling property. In Paper III, it is shown that a bounded pseudoconvex domain whose boundary is α-Hölder for each 0<α<1, is hyperconvex. Global estimates of the exhaustion function are given. In Paper IV, it is shown that on the closure of a domain whose boundary locally is the graph of a continuous function, all plurisubharmonic functions with continuous boundary values can be uniformly approximated by smooth plurisubharmonic functions defined in neighbourhoods of the closure of the domain. Paper V studies Poletsky’s notion of plurisubharmonicity on compact sets. It is shown that a function is plurisubharmonic on a given compact set if, and only if, it can be pointwise approximated by a decreasing sequence of smooth plurisubharmonic functions defined in neighbourhoods of the set. Paper VI introduces the notion of a P-hyperconvex domain. It is shown that in such a domain, both the Dirichlet problem with respect to functions plurisubharmonic on the closure of the domain, and the problem of approximation by smooth plurisubharmoinc functions in neighbourhoods of the closure of the domain have satisfactory answers in terms of plurisubharmonicity on the boundary.
|
Page generated in 0.0534 seconds