• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 12
  • 7
  • 2
  • 2
  • Tagged with
  • 117
  • 117
  • 117
  • 28
  • 20
  • 17
  • 15
  • 15
  • 14
  • 14
  • 13
  • 13
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Dynamic point-formation in dielectric fluids /

Yang, Cheng. January 2003 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Physics, March 2003. / Includes bibliographical references. Also available on the Internet.
52

Generalized hybrid methods for modeling complex electromagnetic structures

Usner, Brian C., January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 186-201).
53

Boundary/finite element meshing from volumetric data with applications

Zhang, Yongjie, Bajaj, Chandrajit, January 2005 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2005. / Supervisor: Chandrajit L. Bajaj. Vita. Includes bibliographical references.
54

Design rules, metaroutines, and boundary objects- a framework for improving healthcare delivery systems /

Ghosh, Manimay. January 2006 (has links) (PDF)
Thesis (Ph.D.)--Montana State University--Bozeman, 2006. / Typescript. Chairperson, Graduate Committee: Durward K. Sobek II. Includes bibliographical references.
55

A theoretical analysis of combined melting and vaporization using the boundary element method

Fulakis, Chris 05 September 2009 (has links)
Melting and vaporization of solids occur very often in nature and in man-made processes. Many analytical and numerical solutions exist for solving the temperature field in the liquid and solid regions, but inaccuracies persist in tracking the phase change interfaces and the numerical solution of the temperature field is usually cumbersome. The Boundary Element Method is proposed as an accurate, efficient way to solve for the temperature field and the interface positions in a phase change problem involving combined melting and vaporization. When comparing to specific one-dimensional test cases, accurate results arc obtained when using a sufficiently small time step. A comparison is made to existing data from a laser drilling experiment. The anticipated physical effects which occur on semi-infinite and finite domains arc confirmed. Consequently, this method can be used to model natural and industrial phenomena involving phase change. / Master of Science
56

A heterogeneous flow numerical model based on domain decomposition methods

Zhang, Yi 14 March 2013 (has links)
In this study, a heterogeneous flow model is proposed based on a non-overlapping domain decomposition method. The model combines potential flow and incompressible viscous flow. Both flow domains contain a free surface boundary. The heterogeneous domain decomposition method is formulated following the Dirichlet-Neumann method. Both an implicit scheme and an explicit scheme are proposed. The algebraic form of the implicit scheme is of the same form of the Dirichlet--Neumann method, whereas the explicit scheme can be interpreted as the classical staggered scheme using the splitting of the Dirichlet-Neumann method. The explicit scheme is implemented based on two numerical solvers, a Boundary element method (BEM) solver for the potential flow model, and a finite element method (FEM) solver for the Navier-Stokes equations (NSE). The implementation based on the two solvers is validated using numerical examples. / Graduation date: 2013
57

Green element solutions for inverse groundwater contaminant problems

Onyari, Ednah Kwamboka January 2016 (has links)
In this work two inverse methodologies are developed based on the Green element method for the recovery of contaminant release histories and reconstruction of the historical concentration plume distribution in groundwater. Unlike direct groundwater contaminant transport simulations which generally produce stable and well-behaved solutions, the solutions of inverse groundwater contaminant transport problems may exhibit non-uniqueness, non-existence and instability, with escalation in computational challenges due to paucity of data. Methods that can tackle inverse problems are of major interest to researchers, and this is the goal of this work. Basically, the advection dispersion equation which governs the transport of contaminants can be handled by analytical or numerical methods like the Finite element method, the Finite difference method, the Boundary element method and their many variants and hybrids. However, if a numerical method is used to solve an inverse problem the resulting matrix is ill-conditioned requiring special techniques to be employed in order to obtain meaningful solutions. In view of this we explore the Green element method, which is a hybrid technique, based on the boundary element theory but is implemented in an element by element manner. This method is attractive to inverse modelling because of the fewer degrees of freedom that are generated at each node. We develop two approaches, in the first approach inverse Green element formulations are developed, the ill-conditioned matrix that results is decomposed with the aid of the singular value decomposition method and solved using the Tikhonov regularized least square method. The second approach utilizes the direct Green element method and the Shuffled complex evolutionary (SCE) optimization method. Finally, the proposed approaches are implemented to solve typical problems in contaminant transport with analytical solutions besides those that have appeared in various research papers. An investigation on the capability of these approaches for the simultaneous recovery of the source strength and the contaminant concentration distribution is carried out for three types of sources and they include boundary iv sources, instantaneous point sources and continuous point sources. The assessment accounts for different transport modes, time discretization, spatial discretization, location of observation points, and the quality of observation data. The numerical results demonstrate the applicability and limitations of the proposed methodologies. It is found in most cases that the solutions with inverse GEM and the least squares approach are of comparable accuracy to those with direct GEM and the SCE approach. However, the latter approach is found to be computationally intensive.
58

Análise do problema harmônico de radiação e difusão acústica, usando o método dos elementos de contorno. / Harmonic analysis of the acoustic radiation and scattering problems, using boundary element methods.

Greco, Marcelo 24 February 2000 (has links)
Neste trabalho, estudam-se problemas bidimensionais de propagação de ondas acústicas e elásticas, no domínio da freqüência, formulados através do Método dos Elementos de Contorno. A formulação é baseada nas representações integrais das equações diferenciais que governam os fenômenos de propagação de ondas acústicas num meio fluido e de ondas elásticas numa estrutura elástica. Analisa-se também a interação entre o fluido e a estrutura com o uso de sistemas de equações acoplados. As soluções fundamentais utilizadas são expressões exatas e não há necessidade de subdivisão dos domínios em células de integração. São aplicadas técnicas de integração alternativas na escolha das equações algébricas no domínio do fluido, visando a melhora das respostas globais do conjunto. Apresentam-se ainda exemplos numéricos, com o objetivo de possibilitar a modelagem numérica de problemas de acoplamento fluido-estrutura e de radiação e difusão acústica. / In this work, acoustic and elastic wave propagation problems in 2D, in frequency domain, are studied and formulated with the Boundary Element Methods. The formulation is based on the integral representations derived from the differential equations that govern the phenomena of acoustic wave propagation in a fluid medium and elastic wave propagation inside an elastic domain. The fluid-structure interaction is also formulated by coupling appropriately the corresponding systems of equations. The fundamental solutions adopted in this work are conveniently chosen to avoid the mass integral terms in the elastic wave integral representation and the equivalent terms in the acoustic integral equation. Thus, the algebraic representations of both problems are written only in terms of boundary values. Subdivisions of the domain to perform integrals over cells are not required. In an attempt to improve the global answers of the fluid problem, several integration techniques have been experimented to build alternative algebraic matrix equations. Numerical examples are presented in order to shown the accuracy of the studied acoustic radiation and scattering problems and also to verify the proposed fluid-structure coupling.
59

Boundary element analysis of cracks in shear deformable plates and shells

Dirgantara, Tatacipta January 2000 (has links)
This thesis presents new boundary element formulations for solution of bending problems in plates and shells. Also presented are the dual boundary element formulations for analysis of crack problems in plates and shells. Reissner plate theory is adopted to represent the bending and shear, and two dimensional (2-D) plane stress is used to model the membrane behaviour of the plate. New set of boundary element formulations to solve bending problems of shear deformable shallow shells having quadratic mid-surface is derived based on the modified Reissner plate and two dimensional plane stress governing equations which are now coupled due to the curvature of the shell. Dual Boundary Element Methods (DBEM) for plates and shells are developed for fracture mechanics analysis of structures loaded in combine bending and tension. Five stress intensity factors, that is, two for membrane and three for bending and shear are computed. The JIntegral technique and Crack Surface Displacements Extrapolation (CSDE) technique are used to compute the stress intensity factors. Special shape functions for crack tip elements are implemented to represent mom accurately displacement fields close to the crack tip. Crack growth processes are simulated with an incremental crack extension analysis. During the simulation, crack growth direction is determined using the maximum principal stress criterion. The crack extension is modelled by adding new boundary elements to the previous crack boundaries. As a consequence remeshing of existing boundaries is not required, and using this method the simulation can be effectively performed. Finally, a multi-region boundary element formulation is presented for modelling assembled plate-structures. The formulation enforces the compatibility of translations and rotations as well as equilibrium of membrane, bending and shear tractions. Examples are presented for plate and shell structures with different geometry, loading and boundar-y conditions to demonstrate the accuracy of the proposed formulations. The results obtained are shown to be in good agreement with analytical and other numerical results. Also presented are crack growth simulations of flat and curved panels loaded in combine bending and tension. The DBEM results are in good agreement with existing numerical and experimental results. Assembled plate-structure and a non-shallow shell bending problems are also analysed using a multi-region formulation developed in this thesis.
60

A dual boundary and finite element method for fluid flow

Silveira, Richard John January 2014 (has links)
No description available.

Page generated in 0.126 seconds