• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bounded Geometry and Property A for Nonmetrizable Coarse Spaces

Bunn, Jared R 01 May 2011 (has links)
We begin by recalling the notion of a coarse space as defined by John Roe. We show that metrizability of coarse spaces is a coarse invariant. The concepts of bounded geometry, asymptotic dimension, and Guoliang Yu's Property A are investigated in the setting of coarse spaces. In particular, we show that bounded geometry is a coarse invariant, and we give a proof that finite asymptotic dimension implies Property A in this general setting. The notion of a metric approximation is introduced, and a characterization theorem is proved regarding bounded geometry. Chapter 7 presents a discussion of coarse structures on the minimal uncountable ordinal. We show that it is a nonmetrizable coarse space not of bounded geometry. Moreover, we show that this space has asymptotic dimension 0; hence, it has Property A.Finally, Chapter 8 regards coarse structures on products of coarse spaces. All of the previous concepts above are considered with regard to 3 different coarse structures analogous to the 3 different topologies on products in topology. In particular, we see that an arbitrary product of spaces with any of the 3 coarse structures with asymptotic dimension 0 has asymptotic dimension 0.

Page generated in 0.0573 seconds