1 |
Spectral Theory for Bounded Operators on Hilbert SpaceStephen, Matthew A. 09 August 2013 (has links)
This thesis is an exposition of spectral theory for bounded operators on Hilbert space. Detailed proofs are given for the functional calculus, the multiplication operator, and the projection-valued measure versions of the spectral theorem for self-adjoint bounded operators. These theorems are then generalized to finite sequences of self-adjoint and commuting bounded operators. Finally, normal bounded operators are discussed, as a particular case of the generalization.
|
2 |
A propriedade da c_o-extensão para retas compactas / c_0-Extension property for compact linesOliveira, Claudia Correa de Andrade 11 August 2014 (has links)
No presente trabalho, estudamos a propriedade da c0-extensão no contexto de espaços de funções contínuas denidas numa reta compacta e tomando valores em R. Nosso principal resultado é que se K é uma reta compacta, então todo subespaço fechado e com dual separável de C(K) possui a propriedade da c0-extensão em C(K) e portanto, o espaço C(K) tem a propriedade de Sobczyk. Também apresentamos uma caracterização das funções phi: K --> L contínuas, crescentes e sobrejetoras entre retas compactas para as quais a subálgebra de Banach phi*C(L) possui a propriedade da c0-extensão em C(K). / In this work, we study the c0-extension property in the context of spaces of continuous real-valued functions defined in a compact line. Our main result states that if K is a compact line, then every closed subspace of C(K) with separable dual has the c0-extension property in C(K) and therefore, the space C(K) has the Sobczyk property. We also present a characterization of the continuous order-preserving surjective maps phi : K --> L between compact lines such that the Banach subalgebra phi*C(L) has the c0-extension property in C(K).
|
Page generated in 0.0515 seconds