• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Astronomy in Denver: Polarization of Bow Shock Nebulae around Massive Stars

Shrestha, Joseph, Hoffman, Jennifer L., Ignace, Richard, Neilson, Hilding R. 01 June 2018 (has links)
Stellar wind bow shocks are structures created when stellar winds with supersonic relative velocities interact with the local interstellar medium (ISM). They can be studied to understand the properties of stars as well as the ISM. Since bow shocks are asymmetric, light becomes polarized by scattering in the regions of enhanced density they create. We use a Monte Carlo radiative transfer code calle SLIP to simulate the polarization signatures produced by both resolved and unresolved bow shocks with analytically derived shapes and density structures. When electron scattering is the polarizing mechanism, we find that optical depth plays an important role in the polarization signatures. While results for low optical depths reproduce theoretical predictions, higher optical depths produce higher polarization and position angle rotations at specific viewing angles. This is due to the geometrical properties of the bow shock along with multiple scattering effects. For dust scattering, we find that the polarization signature is strongly affected by wavelength, dust size, dust composition, and viewing angle. Depending on the viewing angle, the polarization magnitude may increase or decrease as a function of wavelength. We will present results from these simulations and preliminary comparisons with observational data.

Page generated in 0.0854 seconds