• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The analysis of boxed microstrip

Railton, C. J. January 1987 (has links)
No description available.
2

Recent applications of boxed molecular dynamics: a simple multiscale technique for atomistic simulations

Booth, J., Vazquez, S., Martinez-Nunez, E., Marks, Alison J., Rodgers, J., Glowacki, D.R., Shalashilin, D.V. 30 June 2014 (has links)
Yes / In this article we briefly review the Boxed Molecular Dynamics (BXD) method, which allows analysis of thermodynamics and kinetics in complicated molecular systems. BXD is a multiscale technique, in which thermodynamics and long-time dynamics are recovered from a set of short-time simulations. In this article, we review previous applications of BXD to peptide cyclization, diamond etching, solution-phase organic reaction dynamics, and desorption of ions from self-assembled monolayers (SAMs). We also report preliminary results of simulations of diamond etching mechanisms and protein unfolding in AFM experiments. The latter demonstrate a correlation between the protein’s structural motifs and its potential of mean force (PMF). Simulations of these processes by standard molecular dynamics (MD) is typically not possible, since the experimental timescales are very long. However, BXD yields well-converged and physically meaningful results. Compared to other methods of accelerated MD, our BXD approach is very simple; it is easy to implement, and it provides an integrated approach for simultaneously obtaining both thermodynamics and kinetics. It also provides a strategy for obtaining statistically meaningful dynamical results in regions of configuration space that standard MD approaches would visit only very rarely. / DRG is grateful for funding from a Royal Society Research Fellowship. JB and DVS acknowledge the support of EPSRC (Grant No EP/E009824/1). E.M.-N. and S.A.V. are grateful to the “Centro de Supercomputación de Galicia (CESGA)” for the use of its computational resources, as well as to “Ministerio de Economía y Competitividad” (Grant No. CTQ2009-12588) for financial support. DS and E.M.-N. acknowledge the Leverhulme Trust for funding the E.M.-N. visit to Leeds by the grant “Accelerated classical and quantum molecular dynamics and its applications” (Grant No. VP1-2012-013).
3

Untitled Short Essay Honoring Bear Family Records 40!!! Years Boxed Set

Olson, Ted 01 January 2016 (has links)
Album Summary: (3-CD + DVD + 308 page book) Bear Family Records came into being in the late summer of 1975. We want to celebrate the company's 40th anniversary with a very special release. A CD/DVD/book edition has been produced just for this event. You may purchase this item at a special price. Our friends in the music industry, musicians and songwriters, have written and recorded a collection of 'Bear' songs especially for our anniversary. These original recordings - 72 in all - are available exclusively on this LP-sized Bear Family boxed set. Especially interesting are the songs that deal not just with any old bear, but with our own Bear Family label - Ry Cooder: I Wanna Be On Bear Family When I Die, Jim Diamond: Bear Family - Deke Dickerson: Bear Family Talking Blues - Roland Heinrich: Sixteen Discs, and Kim Lenz: What. In the accompanying 308-page LP-sized publication, you will read comments and remarks of internationally recognized music critics, experts and authors on Bear Family. We have re-printed all song lyrics, and of course there is a picture of every performing artist. Look back on Bear Family's 40-year history with the lavishly illustrated book. We want to thank all our facilitators and supporters who have made ??us what we are today, and last but not least we say goodbye to companions we have lost.
4

Stress-Strain Model of Unconfined and Confined Concrete and Stress-block Parameters

Murugesan Reddiar, Madhu Karthik 2009 December 1900 (has links)
Stress-strain relations for unconfined and confined concrete are proposed to overcome some shortcomings of existing commonly used models. Specifically, existing models are neither easy to invert nor integrate to obtain equivalent rectangular stress-block parameters for hand analysis and design purposes. The stress?strain relations proposed are validated for a whole range of concrete strengths and confining stresses. Then, closed form expressions are derived for the equivalent rectangular stress-block parameters. The efficacy of the results is demonstrated for hand analysis applied for deriving the moment-curvature performance of a confined concrete column. Results are compared with those obtained from a computational fiber-element using the proposed stress-strain model and another widely used model; good agreement between the two is observed. The model is then utilized in the development of a new structural system that utilizes the positive attributes of timber and concrete to form a parallel. Timber has the advantage of being a light weight construction material, easy to handle, is environmentally friendly. However, large creep deflections and significant issues with sound transmission (the footfall problem) generally limit timber use to small spans and low rise buildings. Concrete topping on timber sub-floors mitigate some of these issues, but even with well engineered wood systems, the spans are relatively short. In this study, a new structural system called structural boxed-concrete, which utilizes the positive attributes of both timber and reinforced concrete to form a parallel system (different from timber-concrete composite system) is explored. A stress-block approach is developed to calculate strength and deformation. An analytical stress-block based moment-curvature analysis is performed on the timber-boxed concrete structural elements. Results show that the structural timber-boxed concrete members may have better strength and ductility capacities when compared to an equivalent ordinary reinforced concrete member.
5

Stress-Strain Model of Unconfined and Confined Concrete and Stress-block Parameters

Murugesan Reddiar, Madhu Karthik 2009 December 1900 (has links)
Stress-strain relations for unconfined and confined concrete are proposed to overcome some shortcomings of existing commonly used models. Specifically, existing models are neither easy to invert nor integrate to obtain equivalent rectangular stress-block parameters for hand analysis and design purposes. The stress?strain relations proposed are validated for a whole range of concrete strengths and confining stresses. Then, closed form expressions are derived for the equivalent rectangular stress-block parameters. The efficacy of the results is demonstrated for hand analysis applied for deriving the moment-curvature performance of a confined concrete column. Results are compared with those obtained from a computational fiber-element using the proposed stress-strain model and another widely used model; good agreement between the two is observed. The model is then utilized in the development of a new structural system that utilizes the positive attributes of timber and concrete to form a parallel. Timber has the advantage of being a light weight construction material, easy to handle, is environmentally friendly. However, large creep deflections and significant issues with sound transmission (the footfall problem) generally limit timber use to small spans and low rise buildings. Concrete topping on timber sub-floors mitigate some of these issues, but even with well engineered wood systems, the spans are relatively short. In this study, a new structural system called structural boxed-concrete, which utilizes the positive attributes of both timber and reinforced concrete to form a parallel system (different from timber-concrete composite system) is explored. A stress-block approach is developed to calculate strength and deformation. An analytical stress-block based moment-curvature analysis is performed on the timber-boxed concrete structural elements. Results show that the structural timber-boxed concrete members may have better strength and ductility capacities when compared to an equivalent ordinary reinforced concrete member.

Page generated in 0.04 seconds