• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anal Fin Pigmentation in <em>Brachyrhaphis</em> Fishes is Not Used for Sexual Mimicry

Hugentobler, Kandace Mary 01 July 2016 (has links)
Pigmentation patterns can be used as a communication signal in a variety of taxa, and can convey information relative to sexual selection, dominance, and species identification. Pigmentation is also sometimes used in mimicry to deceive the signal receiver into thinking the signaler is something other than itself. Mimicry can occur in several contexts, including sexual interactions, where one sex mimics another. There are relatively few examples of species with females that mimic males. Proposed hypotheses to explain female mimicry of males are that mimicry is used to reduce male harassment or that mimicry is used to display dominance over other females. In this study, we tested these two hypotheses using an experimental approach. Researchers have hypothesized that Brachyrhaphis fishes provide an example of sexual mimicry because females have pigmentation of the same coloration and shape, and in the same location as male genitalia. To test if female mimicry of males reduces male harassment, we designed an experiment to observe male preference for females with and without male-like pigmentation. To test the effect that female mimicry of males has on female dominance, we observed female behavior based on the pigmentation patterns of companion females. We found that neither of these hypotheses was supported by our data. We conclude that similarities in anal fin pigmentation between male and female Brachyrhaphis fishes cannot be explained as a way to reduce male harassment of females and is not a good predictor of female dominance interactions. Alternative explanations must exist for this pattern of anal fin coloration include the possibility that these similarities are simply non-adaptive.
2

Repeated Trait Evolution Driven by Divergent Natural Selection at Early and Late Stages of Speciation

Ingley, Spencer J. 01 October 2015 (has links)
Speciation – the process by which new species arise – is of fundamental importance in the biological sciences. The means by which new species arise, and the relationship among living species, has been a topic that has captivated both lay and scientific observers for centuries. In recent years, the study of speciation has enjoyed increased attention, resulting in significant advances in our understanding of how species form. Although our understanding of the processes that contribute to speciation has increased dramatically in recent years, our knowledge of how reproductive barriers accumulate as speciation proceeds is still limited. Thus, studies that evaluate trait divergence and its consequences at early verses late stages of divergence can provide valuable insight into the speciation process. Chapter 1 of my dissertation focuses on the role of animal personality in the speciation process. Animal personality – defined as consistent individual differences in behavioral tendencies – has been identified as a key player in several ecological and evolutionary processes, yet the role of personality in speciation remains unexplored. In this chapter I discuss the ways by which personality can contribute to a suite of reproductive barriers and drive the speciation process. Chapters 2 through 5 provide a case study evaluating how selection acts on traits at early and late stages of speciation, using the Neotropical Livebearing fish genus Brachyrhaphis as a model system. Brachyrhaphis is ideally suited for this research because several species pairs and population pairs within species occur in similarly divergent selective regimes. I first present results from a field demographic study that shows that the strength of divergent selection acting on life-history traits in populations from divergent predation environments diminishes as speciation proceeds. I then show that population pairs at different stages of divergence are evolving similar morphological patterns along parallel trajectories. At both early and late stages of divergence, populations from environments with dense predator populations have a body shape that appears to be optimized for burst-speed swimming, and important component of predator escape. In contrast, populations from environments lacking predators have a body shape optimized for endurance swimming ability, which is important in environments where competition for foods and mates is high. Next, I show that populations from divergent predation environments do indeed differ in their swimming abilities according to our predictions, reflecting a population level trade-off between burst and endurance swimming ability. Although population level trade-offs were strong, I found no evidence of within population level trade-offs, suggesting that populations have arrived at novel solutions to between population trade-offs that were not present within ancestral populations. Finally, I show that these specialized swimming modes are locally adaptive, and that divergent ecology selects against immigrants, effectively reducing gene flow between populations from divergent environments. Together, these studies provide a valuable glimpse into the repeatability and predictability of trait divergence at different stages of speciation.
3

The Ecological Importance of Extrinsic and Intrinsic Drivers of Animal Movement

Rasmussen, Josh Earl 11 December 2009 (has links) (PDF)
The movement of individuals is foundational to many ecological processes. For example, the movement of an organism from one place to another alters population density at both sites and has potential for affecting the genetic dynamics within the new population. Individual movement events may be in synchrony with overall trends in populations, e.g. spawning migrations, or may be atypical (asynchronous). This latter movement type can affect population and metapopulation dynamics, depending on its prevalence within a population. Nevertheless, given the complexity of interactions, the causative factors of movement are understood vaguely, much less for aquatic organisms. Drivers of movement are extrinsic (e.g. habitat quality, predation or habitat heterogeneity) and intrinsic (e.g. sex, size, or behavioral tendencies). Interactions among these drivers provide crucial insight into the patterns of movement observed within populations. Habitat is here shown to affect observed movement patterns of populations of southern leatherside chub (Lepidomeda aliciae). Streams with higher-quality habitat were inhabited by populations exhibiting lower overall movement compared to lower-quality streams. However, observations of individual long distance movement relative to the norm within the population suggest that movement may also be behaviorally based. In further tests, it is shown that, indeed, behavioral tendencies of individuals can be measured and are predictive of annual movement by individuals. Other drivers, habitat availability and quality, were also found to influence movement on a yearly basis. Movement patterns are also affected by the presence or absence of predators. A tropical livebearer (Brachyrhaphis rhabdophora) has a higher percentage of individuals classified as generally moving when predators are absent from the environment compared to predator sites. Predation environment also significantly affects individual body shape with predator sites possessing caudal peduncles with greater surface area, an adaptation likely promoting burst speed for greater escape abilities. Classification of individuals as generally moving or generally not moving was also significantly related to variation of body shape of these fish. However, biological significance is ambiguous given the absence of obvious morphology trends explained by this factor. It is critical to understand these drivers to better understand the dynamic interface between ecology and evolution.
4

Effects of Predation Environment and Food Availability on Somatic Growth in the Livebearing Fish <em>Brachyrhaphis rhabdophora</em> (Pisces: Poeciliidae)

Gale, Brittany Herrod 13 March 2012 (has links) (PDF)
Variation in somatic growth rates has interested biologists for decades because of the relationship between growth and other fitness-determining traits (i.e. fecundity, survival, and body size), and the corresponding effect of somatic growth on production of organisms humans use for food. The interaction between genetic variation in growth rates and environmentally induced variation in growth rates shows the pattern of growth across multiple environments (i.e. the reaction norm) that clarifies the history and potential future of evolutionary change in growth rates among populations. Theoretical predictions suggest variation in predator-induced mortality rates can influence mean growth rates and the shape of the reaction norm for growth. The adaptive growth hypothesis predicts that mean growth rates would evolve in response to environmental pressures, such as mortality rates, at different body sizes. Few studies, however, have focused on variation in reaction norms for growth in response to resource availability between high-predation and low-predation environments. We used juvenile Brachyrhaphis rhabdophora from high-predation and low-predation environments to test for variation in mean growth rates and for variation in reaction norms for growth at two levels of food availability in a common-environment experiment, and we compared field somatic growth rates in juveniles from the same two environments (high-predation and low-predation). In the common-environment experiment, mean growth rates did not differ between predation environments, but the interaction between predation environment and food level took the form of a crossing reaction norm for both growth in length and growth in mass. Fish from low-predation environments exhibited no significant variation in growth rate between high and low food amount treatments. In contrast, fish from high-predation environments exhibited wide variation in growth rates between low and high food treatments, with higher food availability resulting in higher growth rates. In the field, individuals in the high-predation environment grow at a faster rate than those in a low-predation environment at the smallest sizes (comparable to sizes in the common-environment experiment). These data provide no evidence for evolved differences in mean growth rates between predation environments. However, fish from high-predation environments exhibited greater plasticity in growth rates in response to resource availability suggesting that increased risk of predation could drive variation in food availability for prey and consequent selection for plasticity.
5

Does Predation Environment Affect Repeated Responses to Predation Cues in the Fish Brachyrhaphis rhabdophora?

Nate, Madeleine S. 12 December 2022 (has links) (PDF)
Individual organisms face trade-offs when dealing with predation—more time spent avoiding predators often results in less time allocated to energy acquisition and reproductive-related activities. Individuals that optimize this trade-off and respond appropriately to current risk levels in their environment should be at an advantage. What is less clear is whether this tradeoff changes when individuals are repeatedly exposed to a predation threat. There may be advantages to responding consistently to every signal of threat, but it might also be advantageous to modulate individual behavior. Moreover, it is unclear how evolutionary history of a population might affect such individual responses. Our study was designed to address two questions: (1) how do B. rhabdophora respond to repeated exposures of a predation cue; and (2) do repeated responses differ based on evolutionary history? To answer these questions, we used a predation cue stimulus to repeatedly expose B. rhabdophora individuals from both high- and low-predation populations. We measured the change in total distance traveled in a 15-minute trial before and after each cue exposure, and then compared the proportional change in response to the first cue to that of each successive cue (repeated four times) to see if a decrease in response occurred. We found that fish responded consistently to each cue exposure. Both populations showed similar decreases in activity in response to each exposure and did not return to normal baseline activity until the cue was removed from the test tank. That both high- and low-predation populations respond consistently to repeated cues of predation with no reinforcement prompts questions as to the potential importance of the relative length of risk and safe periods in affecting response variation. It also provides a starting point in understanding how recent risk exposure and the evolutionary history of risk in a population both interact to influence individual response to threats over time.

Page generated in 0.0534 seconds