• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bi-directional vulnerability of brain tumors to Wnt signaling

Manoranjan, Branavan January 2019 (has links)
Brain tumors represent a leading cause of cancer mortality, of which medulloblastoma (MB) and glioblastoma (GBM) represent the most frequent malignant pediatric and adult brain tumors, respectively. The identification of a rare clonal population of cells, termed cancer stem cells (CSCs) or brain tumor-initiating cells (BTICs), as having the ability to initiate, proliferate, and maintain tumor growth has offered a developmental framework for studying MB and GBM. Evidence in support of cell signaling programs carried forward from brain development into oncogenesis have provided opportunities for BTIC-directed therapies targeting the key BTIC property of self-renewal. Given that neural stem cells (NSCs) must maintain a relative balance between self-renewal and differentiation, brain tumorigenesis may be conceptualized as a disease of unregulated BTIC self-renewal. In this work, I aim to demonstrate the re-emergence of self-renewal genes that regulate NSCs in BTICs, use the Wnt pathway as a model by which these genes may be regulated in a context-specific manner, and identify clinically tractable therapies directed at the overall BTIC self-renewal signaling machinery. Specifically, in Chapter 2, I describe the presence of a shared signaling program between NSCs and MB BTICs consisting of Bmi1 and FoxG1. In Chapter 3, I provide evidence in support of a context-specific tumor suppressive function for activated Wnt/β-catenin signaling in MB. Lastly, in Chapter 4, I demonstrate a CD133-AKT-Wnt signaling axis in which CD133 functions as a putative cell surface receptor for AKT-dependent Wnt activation in GBM. Overall, the body of this thesis offers a mechanistic model by which BTICs may be regulated and targeted to impair tumor growth and improve overall survivorship in childhood MB and adult GBM. / Thesis / Doctor of Philosophy (PhD)
2

Advanced Mesoporous Silica Nanoparticles for the Treatment of Brain Tumors

Bielecki, Peter 27 August 2020 (has links)
No description available.

Page generated in 0.1109 seconds