• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementation, validation and evaluation of an ESC system during a side impact using an advanced driving simulator

Andersson, Anders January 2009 (has links)
<p>The objective of this thesis is to implement a basic, yet realistic, ESC system into the VTI simulator environment. This system is then validated to assure that it is working properly and provides a realistic behavior.</p><p>The implemented ESC system is used in a study, where the ESC system could be turned on and off, to evaluate the benefits of an ESC system after a side impact. This study shows that an ESC system may aid the driver in such a critical situation when the driver is unaware that a side impact will occur. With the ESC system active no driver lost control while with the system inactive there were five drivers that lost control, but deviations in initial speed give statistical difficulties, thus more tests are needed. In the case where the driver knows that an impact will occur the ESC system showed to stabilize the automobile faster and it is shown that an expected improvement in stabilization time is between 40 to 62 percent. It was also seen during this part of the scenario that 2 percent loss of control occurred with an active ESC system and 45 percent without.</p>
2

Implementation, validation and evaluation of an ESC system during a side impact using an advanced driving simulator

Andersson, Anders January 2009 (has links)
The objective of this thesis is to implement a basic, yet realistic, ESC system into the VTI simulator environment. This system is then validated to assure that it is working properly and provides a realistic behavior. The implemented ESC system is used in a study, where the ESC system could be turned on and off, to evaluate the benefits of an ESC system after a side impact. This study shows that an ESC system may aid the driver in such a critical situation when the driver is unaware that a side impact will occur. With the ESC system active no driver lost control while with the system inactive there were five drivers that lost control, but deviations in initial speed give statistical difficulties, thus more tests are needed. In the case where the driver knows that an impact will occur the ESC system showed to stabilize the automobile faster and it is shown that an expected improvement in stabilization time is between 40 to 62 percent. It was also seen during this part of the scenario that 2 percent loss of control occurred with an active ESC system and 45 percent without.

Page generated in 0.0619 seconds