• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transport branché et structures fractales / Branched transport and fractal structures

Pegon, Paul 21 November 2017 (has links)
Cette thèse est consacrée à l’étude du transport branché, de problèmes variationnels qui y sont liés et de structures fractales qui peuvent y apparaître. Le problème du transport branché consiste à connecter deux mesures de même masse par le biais d’un réseau en minimisant un certain coût, qui sera pour notre étude proportionnel à mLα afin de déplacer une masse m sur une distance L. Plusieurs modèles continus ont été proposés pour formuler le problème, et on s’intéresse plus particulièrement aux deux grands types de modèles statiques : le modèle Lagrangien et le modèle Eulérien, avec une emphase sur le premier. Après avoir posé proprement les bases de ces modèles, on établit rigoureusement leur équivalence en utilisant une décomposition de Smirnov des mesures vectorielles à divergence mesure. On s’intéresse par la suite à un problème d’optimisation de forme lié au transport branché qui consiste à déterminer les ensembles de volume 1 les plus proches de l’origine au sens du transport branché. On démontre l’existence d’une solution, décrite comme un ensemble de sous-niveau de la fonction paysage, désormais standard en transport branché. La régularité Hölder de la fonction paysage, obtenue ici sans hypothèse de régularité a priori sur la solution considérée, permet d’obtenir une borne supérieure sur la dimension de Minkowski de son bord, qui est non-entière et dont on conjecture qu’elle en est la dimension exacte. Des simulations numériques, basées sur une approximation variationnelle à la Modica-Mortola de la fonctionnelle du transport branché, ont été effectuées dans le but d’étayer cette conjecture. Une dernière partie de la thèse se concentre sur la fonction paysage, essentielle à l’étude de problèmes variationnels faisant intervenir le transport branché en ce sens qu’elle apparaît comme une variation première du coût d’irrigation. Le but est d’étendre sa définition et ses propriétés fondamentales au cas d’une source étendue, ce à quoi l’on parvient dans le cas d’un réseau possédant un système fini de racines, par exemple pour des mesures à supports disjoints. On donne une définition satisfaisante de la fonction paysage dans ce cas, qui vérifie en particulier la propriété de variation première et on démontre sa régularité Hölder sous des hypothèses raisonnables sur les mesures à connecter. / This thesis is devoted to the study of branched transport, related variational problems and fractal structures that are likely to arise. The branched transport problem consists in connecting two measures of same mass through a network minimizing a certain cost, which in our study will be proportional to mLα in order to move a mass m over a distance L. Several continuous models have been proposed to formulate this problem, and we focus on the two main static models : the Lagrangian and the Eulerian ones, with an emphasis on the first one. After setting properly the bases for these models, we establish rigorously their equivalence using a Smirnov decomposition of vector measures whose divergence is a measure. Secondly, we study a shape optimization problem related to branched transport which consists in finding the sets of unit volume which are closest to the origin in the sense of branched transport. We prove existence of a solution, described as a sublevel set of the landscape function, now standard in branched transport. The Hölder regularity of the landscape function, obtained here without a priori hypotheses on the considered solution, allows us to obtain an upper bound on the Minkowski dimension of its boundary, which is non-integer and which we conjecture to be its exact dimension. Numerical simulations, based on a variational approximation a la Modica-Mortola of the branched transport functional, have been made to support this conjecture. The last part of the thesis focuses on the landscape function, which is essential to the study of variational problems involving branched transport as it appears as a first variation of the irrigation cost. The goal is to extend its definition and fundamental properties to the case of an extended source, which we achieve in the case of networks with finite root systems, for instance if the measures have disjoint supports. We give a satisfying definition of the landscape function in that case, which satisfies the first variation property and we prove its Hölder regularity under reasonable assumptions on the measures we want to connect.
2

Approximations par champs de phases pour des problèmes de transport branché / Phase-field approximation for some branched transportation problems

Ferrari, Luca Alberto Davide 05 October 2018 (has links)
Dans cette thèse, nous concevons des approximations par champ de phase de certains problèmes de Transport Branché. Le Transport Branché est un cadre mathématique pour modéliser des réseaux de distribution offre-demande qui présentent une structure d'arbre. En particulier, le réseau, les usines d'approvisionnement et le lieu de la demande sont modélisés en tant que mesures et le probléme est présenté comme un probléme d'optimisation sous contrainte. Le coût de transport d'une masse m le long d'un bord de longueur L est h(m)xL et le coût total d'un réseau est défini comme la somme de la contribution sur tous ses arcs. Le cas du Transport Branché correspond avec la choix h(m) =|m|^α où α est dans [0,1). La sous-additivité de la fonction cout s'assure que déplacer deux masses conjointement est moins cher que de le faire séparément. Dans ce travail, nous introduisons diverses approximations variationnelles du problème du transport branché. Les fonctionnelles que on vais utiliser sont basées sur une représentation par champ de phase du réseau et sont plus lisses que le problème original, ce qui permet des méthodes d'optimisation numérique efficaces. Nous introduisons une famille des fonctionnelles inspirées par le fonctionnelle de Ambrosio et Tortorelli pour modéliser une fonction de coût h affine dans l'espace R^2. Pour ce cas, nous produisons un résultat complet de Gamma-convergence et nous le corrélons avec une procédure de minimisation alternée pour obtenir des approximations numériques des minimiseurs. Puis nous généralisons cette approche à n'importe quel espace R^n et obtenons un résultat complet de $Gamma$-convergence dans le cas de surfaces k-dimensionnelles avec k<n. En particulier, nous obtenons une approximation variationnelle du problème du Plateau dans n'importe quelle dimension et co-dimension. Dans la dernière partie de la thèse, nous proposons deux approches générales pour des fonctions de coût concave. Dans le premier, nous introduisons une approche par plusieurs champs de phase et récupérons n'importe quelle fonction de coût affine par morceaux. Enfin, nous proposons et étudions une famille de fonctions permettant d'obtenir dans la limite toutes fonction de coût concave h. / In this thesis we devise phase field approximations of some Branched Transportation problems. Branched Transportation is a mathematical framework for modeling supply-demand distribution networks which exhibit tree like structures. In particular the network, the supply factories and the demand location are modeled as measures and the problem is cast as a constrained optimization problem. The transport cost of a mass m along an edge with length L is h(m)xL and the total cost of a network is defined as the sum of the contribution on all its edges. The branched transportation case consists with the specific choice h(m)=|m|^α where α is a value in [0,1). The sub-additivity of the cost function ensures that transporting two masses jointly is cheaper than doing it separately. In this work we introduce various variational approximations of the branched transport optimization problem. The approximating functionals are based on a phase field representation of the network and are smoother than the original problem which allows for efficient numerical optimization methods. We introduce a family of functionals inspired by the Ambrosio and Tortorelli one to model an affine transport cost functions. This approach is firstly used to study the problem any affine cost function h in the ambient space R^2. For this case we produce a full Gamma-convergence result and correlate it with an alternate minimization procedure to obtain numerical approximations of the minimizers. We then generalize this approach to any ambient space and obtain a full Gamma-convergence result in the case of k-dimensional surfaces. In particular, we obtain a variational approximation of the Plateau problem in any dimension and co-dimension. In the last part of the thesis we propose two models for general concave cost functions. In the first one we introduce a multiphase field approach and recover any piecewise affine cost function. Finally we propose and study a family of functionals allowing to recover in the limit any concave cost function h.

Page generated in 0.0946 seconds