Spelling suggestions: "subject:"brand world scenarios"" "subject:"crane world scenarios""
1 |
Aspects of extra dimensions and membranesSundin, Martin January 2011 (has links)
This thesis is about thwo papers related to extra dimensions. Paper A discusses extrinsic curvature effects, and paper B treats symmetries of supersymmetric membranes. In the part of this thesis related to paper A, we extend the theory of non-relativistic quantum particles confined to submanifolds to relativistic boson fields. We show that a Klein-Gordon field constrained to a submanifold of a Lorentzian manifold experiences an induced potential similar to the one for the Schr{\"o}dinger equation. We embedd the Schwarzschild solution and the Robertson-Walker space-time and derive the induced potentials. Possible physical consequences of these induced potentials are also discussed. The second part is related to paper B, we study the dynamics of supersymmetric membranes, which are higher dimensional generalizations of supersymmetric strings. We derive a supersymmetric analogue of a dynamical symmetry for bosonic membranes. / QC 20110427
|
2 |
Physics in Higher-Dimensional ManifoldsSeahra, Sanjeev January 2003 (has links)
In this thesis, we study various aspects of physics in higher-dimensional manifolds involving a single extra dimension. After giving some historical perspective on the motivation for studying higher-dimensional theories of physics, we describe classical tests for a non-compact extra dimension utilizing test particles and pointlike gyroscopes. We then turn our attention to the problem of embedding any given <i>n</i>-dimensional spacetime within an (<i>n</i>+1)-dimensional manifold, paying special attention to how any structure from the extra dimension modifies the standard <i>n</i>-dimensional Einstein equations. Using results derived from this investigation and the formalism derived for test particles and gyroscopes, we systematically introduce three specific higher-dimensional models and classify their properties; including the Space-Time-Matter and two types of braneworld models. The remainder of the thesis concentrates on specific higher-dimensional cosmological models drawn from the above mentioned scenarios; including an analysis of the embedding of Friedmann-Lemaitre-Robertson-Walker submanifolds in 5-dimensional Minkowski and topological Schwarzschild spaces, and an investigation of the dynamics of a <i>d</i>-brane that takes the form of a thin shell encircling a (<i>d</i>+2)-dimensional topological black hole in anti-deSitter space. The latter is derived from a finite-dimensional action principle, which allows us to consider the canonical quantization of the model and the solutions of the resulting Wheeler-DeWitt equation.
|
3 |
Physics in Higher-Dimensional ManifoldsSeahra, Sanjeev January 2003 (has links)
In this thesis, we study various aspects of physics in higher-dimensional manifolds involving a single extra dimension. After giving some historical perspective on the motivation for studying higher-dimensional theories of physics, we describe classical tests for a non-compact extra dimension utilizing test particles and pointlike gyroscopes. We then turn our attention to the problem of embedding any given <i>n</i>-dimensional spacetime within an (<i>n</i>+1)-dimensional manifold, paying special attention to how any structure from the extra dimension modifies the standard <i>n</i>-dimensional Einstein equations. Using results derived from this investigation and the formalism derived for test particles and gyroscopes, we systematically introduce three specific higher-dimensional models and classify their properties; including the Space-Time-Matter and two types of braneworld models. The remainder of the thesis concentrates on specific higher-dimensional cosmological models drawn from the above mentioned scenarios; including an analysis of the embedding of Friedmann-Lemaitre-Robertson-Walker submanifolds in 5-dimensional Minkowski and topological Schwarzschild spaces, and an investigation of the dynamics of a <i>d</i>-brane that takes the form of a thin shell encircling a (<i>d</i>+2)-dimensional topological black hole in anti-deSitter space. The latter is derived from a finite-dimensional action principle, which allows us to consider the canonical quantization of the model and the solutions of the resulting Wheeler-DeWitt equation.
|
Page generated in 0.0833 seconds