• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Out-of-Core Multi-Resolution Volume Rendering of Large Data Sets

Lundell, Fredrik January 2011 (has links)
A modality device can today capture high resolution volumetric data sets and as the data resolutions increase so does the challenges of processing volumetric data through a visualization pipeline. Standard volume rendering pipelines often use a graphic processing unit (GPU) to accelerate rendering performance by taking beneficial use of the parallel architecture on such devices. Unfortunately, graphics cards have limited amounts of video memory (VRAM), causing a bottleneck in a standard pipeline. Multi-resolution techniques can be used to efficiently modify the rendering pipeline, allowing a sub-domain within the volume to be represented at different resolutions. The active resolution distribution is temporarily stored on the VRAM for rendering and the inactive parts are stored on secondary memory layers such as the system RAM or on disk. The active resolution set can be optimized to produce high quality renders while minimizing the amount of storage required. This is done by using a dynamic compression scheme which optimize the visual quality by evaluating user-input data. The optimized resolution of each sub-domain is then, on demand, streamed to the VRAM from secondary memory layers. Rendering a multi-resolution data set requires some extra care between boundaries of sub-domains. To avoid artifacts, an intrablock interpolation (II) sampling scheme capable of creating smooth transitions between sub-domains at arbitrary resolutions can be used. The result is a highly optimized rendering pipeline complemented with a preprocessing pipeline together capable of rendering large volumetric data sets in real-time.

Page generated in 0.0554 seconds