• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of Inclined Loading on Passive Force-Deflection Curves and Skew Adjustment Factors

Curtis, Joshua Rex 01 April 2018 (has links)
Skewed bridges have exhibited poorer performance during lateral earthquake loading in comparison to non-skewed bridges (Apirakvorapinit et al. 2012; Elnashai et al. 2010). Results from numerical modeling by Shamsabadi et al. (2006), small-scale laboratory tests by Rollins and Jessee (2012), and several large-scale tests performed by Rollins et al. at Brigham Young University (Franke 2013; Marsh 2013; Palmer 2013; Smith 2014; Frederickson 2015) led to the proposal of a reduction curve used to determine a passive force skew reduction factor depending on abutment skew angle (Shamsabadi and Rollins 2014). In all previous tests, a uniform longitudinal load has been applied to the simulated bridge abutment. During seismic events, however, it is unlikely that bridge abutments would experience pure longitudinal loading. Rather, an inclined loading situation would be expected, causing rotation of the abutment backwall into the backfill. In this study, a large-scale test was performed where inclined loading was applied to a 30° skewed bridge abutment with sand backfill and compared to a baseline test with uniform loading and a non-skewed abutment. The impact of rotational force on the passive resistance of the backfill and the skew adjust factor was then evaluated. It was determined that inclined loading does not have a significant effect on the passive force skew reduction factor. However, the reduction factor was somewhat higher than predicted by the proposed reduction curve from Shamsabadi and Rollins 2014. This can be explained by a reduction in the effective skew angle caused by the friction between the side walls and the back wall. The inclined loading did not change the amount of movement required to mobilize passive resistance with ultimate passive force developing for displacements equal to 3 to 6% of the wall height. The rotation of the pile cap due to inclined loading produced higher earth pressure on the obtuse side of the skew wedge, as was expected.These findings largely resolve the concern that inclined loading situations during an earthquake may render the proposed passive force skew reduction curve invalid. We suggest that the proposed reduction curve remains accurate during inclined loading and should be implemented in current codes and practices to properly account for skew angle in bridge design.
2

Effect of Inclined Loading on Passive Force-Deflection Curves and Skew Adjustment Factors

Curtis, Joshua Rex 01 April 2018 (has links)
Skewed bridges have exhibited poorer performance during lateral earthquake loading in comparison to non-skewed bridges (Apirakvorapinit et al. 2012; Elnashai et al. 2010). Results from numerical modeling by Shamsabadi et al. (2006), small-scale laboratory tests by Rollins and Jessee (2012), and several large-scale tests performed by Rollins et al. at Brigham Young University (Franke 2013; Marsh 2013; Palmer 2013; Smith 2014; Frederickson 2015) led to the proposal of a reduction curve used to determine a passive force skew reduction factor depending on abutment skew angle (Shamsabadi and Rollins 2014). In all previous tests, a uniform longitudinal load has been applied to the simulated bridge abutment. During seismic events, however, it is unlikely that bridge abutments would experience pure longitudinal loading. Rather, an inclined loading situation would be expected, causing rotation of the abutment backwall into the backfill. In this study, a large-scale test was performed where inclined loading was applied to a 30 skewed bridge abutment with sand backfill and compared to a baseline test with uniform loading and a non-skewed abutment. The impact of rotational force on the passive resistance of the backfill and the skew adjust factor was then evaluated. It was determined that inclined loading does not have a significant effect on the passive force skew reduction factor. However, the reduction factor was somewhat higher than predicted by the proposed reduction curve from Shamsabadi and Rollins 2014. This can be explained by a reduction in the effective skew angle caused by the friction between the side walls and the back wall. The inclined loading did not change the amount of movement required to mobilize passive resistance with ultimate passive force developing for displacements equal to 3 to 6% of the wall height. The rotation of the pile cap due to inclined loading produced higher earth pressure on the obtuse side of the skew wedge, as was expected.These findings largely resolve the concern that inclined loading situations during an earthquake may render the proposed passive force skew reduction curve invalid. We suggest that the proposed reduction curve remains accurate during inclined loading and should be implemented in current codes and practices to properly account for skew angle in bridge design.

Page generated in 0.1158 seconds