• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis of New Molecule-Based Magnets using Bridging Organic Radicals

Houser, Christopher L. 12 July 2019 (has links)
Several new families of organic acceptors that are candidates as building blocks of molecule-based ferrimagnets were synthesized and characterized. These families include fluorodicyanostilbenes, a tetrachlorodicyanostilbene, naphthyltricyanoethylenes, bromophenyltricyanoethylenes, and an anthryltricyanoethylene. The magnetic networks were synthesized by reacting each acceptor with V(CO)6. The magnets synthesized in this study were characterized using a SQUID magnetometer, elemental analysis, and infrared spectroscopy. Although some combinations failed to yield magnetically ordered materials, others exhibited ordering temperatures in the range of 95 K – 260 K. The ordering temperatures and saturation magnetizations were compared among families of acceptors and correlated with individual properties of the acceptors such as reduction potential and structure. / Doctor of Philosophy / Several new families of organic molecules have been created and examined for use as building blocks of molecule-based magnets. These families include fluorodicyanostilbenes, a tetrachlorodicyanostilbene, naphthyltricyanoethylenes, bromophenyltricyanoethylenes, and an anthryltricyanoethylene. The 3-D magnetic scaffoldings were created by combining an individual organic molecule in one of the families listed above with vanadium. The magnets created in this study were examined using a SQUID magnetometer, elemental analysis, and infrared spectroscopy. Some of the combinations of the organic molecules with vanadium failed to result in a 3-D magnetic scaffolding and showed no magnetic properties. Others showed magnetic properties in the below certain temperatures in the range of 95 K – 260 K. The magnetic properties were compared among families of molecules and correlated with individual properties of each molecule such as electronic effects and structure.

Page generated in 0.1288 seconds