• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Remediation of brine-contaminated soil using calcium nitrate, gypsum, and straw

Nielsen, Jennifer I. 23 April 2013 (has links)
Salt-affected soils from point source brine contamination are common in the active oil field in SE Saskatchewan. A remediation process that included dewatering by sub-surface tile drains, application of surface amendments (calcium nitrate and straw), and growing forages has been successful but not previously examined. In a field study of two remediation sites, the changes in vegetation, soil salinity, and groundwater were assessed using geo-referenced electromagnetic (EM) maps (EM38h, EM38v, and EM31v), piezometers, and soil sampling. A laboratory soil core leaching experiment studied the effect of gypsum, calcium nitrate, and straw at various rates on the remediation of a brine-contaminated soil. All treatments including the control reduced the electrical conductivity (EC) to non-saline values (<4 dS m-1). The sodium adsorption ratio (SAR) was reduced to <13 with the high rates of gypsum and calcium nitrate. The fastest and most effective treatments were comprised of all rates of gypsum and the highest rate of calcium nitrate.
2

Remediation of brine-contaminated soil using calcium nitrate, gypsum, and straw

Nielsen, Jennifer I. 23 April 2013 (has links)
Salt-affected soils from point source brine contamination are common in the active oil field in SE Saskatchewan. A remediation process that included dewatering by sub-surface tile drains, application of surface amendments (calcium nitrate and straw), and growing forages has been successful but not previously examined. In a field study of two remediation sites, the changes in vegetation, soil salinity, and groundwater were assessed using geo-referenced electromagnetic (EM) maps (EM38h, EM38v, and EM31v), piezometers, and soil sampling. A laboratory soil core leaching experiment studied the effect of gypsum, calcium nitrate, and straw at various rates on the remediation of a brine-contaminated soil. All treatments including the control reduced the electrical conductivity (EC) to non-saline values (<4 dS m-1). The sodium adsorption ratio (SAR) was reduced to <13 with the high rates of gypsum and calcium nitrate. The fastest and most effective treatments were comprised of all rates of gypsum and the highest rate of calcium nitrate.

Page generated in 0.0596 seconds