• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zhangfei suppresses the growth of Medulloblastoma cells and commits them to programmed cell death

Bodnarchuk, Timothy 11 July 2011
Medulloblastoma cells do not contain detectable amounts of the bZIP protein Zhangfei. However, previous work has shown that expression of this protein in cells of the ONS-76 line, derived from a human medulloblastoma, causes the cells to stop growing and develop processes that resemble neuritis (a characteristic of differentiated neurons). Zhangfei-expressing cells eventually die. My objective was to determine the molecular mechanisms by which Zhangfei influences ONS-76 cells. My strategy was to infect ONS-76 cells with adenovirus vectors expressing either Zhangfei or the control E. coli protein â-galactosidase (LacZ) and then to compare the following parameters in Zhangfei and LacZ-expressing cells: a) markers of apoptosis, autophagy and macropinocytosis (the three main pathways of cell death); b) transcripts for genes involved in neurogenesis and apoptosis; c) phosphorylation of peptide targets of selected cellular protein kinases; and d) active transcription factors. Zhangfei-expressing cells appeared to succumb to apoptosis as determined by the expression of phosphatidylserine on the cell surface and intensity of nuclear staining with the DNA dye Hoechst. Increased staining for autophagic vesicles and upregulated expression of autophagy response genes in these cells indicated that they were undergoing autophagy, possibly associated with apoptosis. My analysis of steady-state transcripts for genes involved in apoptosis and neurogenesis and functional protein kinases in Zhangfei-expressing cells indicated that the mitogen-activated protein kinase (MAPK) pathway was active in these cells. In addition, I found that the transcription factor Brn3a as well as factors implicated in differentiation were also active. These observations led me to hypothesize that Zhangfei enhances the expression of Brn3a, a known inducer of TrkA, the high-affinity receptor for nerve growth factor (NGF). TrkA then binds in an autocrine manner to NGF, triggering the MAPK pathway and leading to differentiation of ONS-76 cells into neuron and glia-like cells, eventually bringing about cell death by apoptosis and autophagy. I tested this hypothesis by showing that Zhangfei could enhance transcription from the isolated Brn3a promoter, that ONS-76 cells produce NGF as detected in a bioassay, and that antibodies against NGF and inhibitors of TrkA and selected components of the MAPK pathway could partially restore the growth of Zhangfei-expressing ONS-76 cells. My work supports previous work highlighting the importance of NGF-TrkA signaling in the outcome of medulloblastomas and shows how Zhangfei is able to trigger this pathway.
2

Zhangfei suppresses the growth of Medulloblastoma cells and commits them to programmed cell death

Bodnarchuk, Timothy 11 July 2011 (has links)
Medulloblastoma cells do not contain detectable amounts of the bZIP protein Zhangfei. However, previous work has shown that expression of this protein in cells of the ONS-76 line, derived from a human medulloblastoma, causes the cells to stop growing and develop processes that resemble neuritis (a characteristic of differentiated neurons). Zhangfei-expressing cells eventually die. My objective was to determine the molecular mechanisms by which Zhangfei influences ONS-76 cells. My strategy was to infect ONS-76 cells with adenovirus vectors expressing either Zhangfei or the control E. coli protein â-galactosidase (LacZ) and then to compare the following parameters in Zhangfei and LacZ-expressing cells: a) markers of apoptosis, autophagy and macropinocytosis (the three main pathways of cell death); b) transcripts for genes involved in neurogenesis and apoptosis; c) phosphorylation of peptide targets of selected cellular protein kinases; and d) active transcription factors. Zhangfei-expressing cells appeared to succumb to apoptosis as determined by the expression of phosphatidylserine on the cell surface and intensity of nuclear staining with the DNA dye Hoechst. Increased staining for autophagic vesicles and upregulated expression of autophagy response genes in these cells indicated that they were undergoing autophagy, possibly associated with apoptosis. My analysis of steady-state transcripts for genes involved in apoptosis and neurogenesis and functional protein kinases in Zhangfei-expressing cells indicated that the mitogen-activated protein kinase (MAPK) pathway was active in these cells. In addition, I found that the transcription factor Brn3a as well as factors implicated in differentiation were also active. These observations led me to hypothesize that Zhangfei enhances the expression of Brn3a, a known inducer of TrkA, the high-affinity receptor for nerve growth factor (NGF). TrkA then binds in an autocrine manner to NGF, triggering the MAPK pathway and leading to differentiation of ONS-76 cells into neuron and glia-like cells, eventually bringing about cell death by apoptosis and autophagy. I tested this hypothesis by showing that Zhangfei could enhance transcription from the isolated Brn3a promoter, that ONS-76 cells produce NGF as detected in a bioassay, and that antibodies against NGF and inhibitors of TrkA and selected components of the MAPK pathway could partially restore the growth of Zhangfei-expressing ONS-76 cells. My work supports previous work highlighting the importance of NGF-TrkA signaling in the outcome of medulloblastomas and shows how Zhangfei is able to trigger this pathway.
3

The effect of brn3a and zhangfei on the nerve growth factor receptor, trkA.

Valderram Linares, Ximena Paola 30 August 2007
Herpes simplex viruses (HSV) establish latent infections in sensory neurons of their host and are maintained in this state by little understood mechanisms that, at least in part, are regulated by signalling through nerve growth factor (NGF) and its receptor tropomyosin related kinase, trkA. Previous studies have demonstrated that Zhangfei is a transcriptional factor that is expressed in differentiated neurons and is thought to influence HSV replication and latency. Zhangfei, like the HSV trans-activator VP16 and Luman, binds the ubiquitous nuclear protein host cell factor (HCF) inhibiting the ability of VP16 and Luman to initiate HSV replication. <p>Recently, Brn3a, another neuronal factor thought to influence HSV latency and reactivation was found to possess an HCF-binding domain and could potentially require HCF for activity. The neuronal POU IV domain protein, Brn3a, among its many regulatory functions has been described as an enhancer of the NGF receptor trkA, during development in mouse. I therefore investigated the possible link between Brn3a, TrkA, NGF signaling, HCF, Zhangfei and HSV-1 latency and reactivation. I hypothesized that Zhangfei would also suppress the ability of Brn3a to activate the expression of TrkA and that this would have an impact on NGF-TrkA signaling and, consequently on HSV-1 reactivation from latency.<p>My first study determined which Brn3a/trkA promoter interactions were important for trkA transcription. I constructed a plasmid that contains 1043 base pairs of genomic sequences that extend from 30 nucleotides upstream of trkA coding region. In contrast to previous data, a short 190 bp region that lies proximal to the trkA initiation codon was sufficient for Brn3a trans-activation in NGF-differentiated PC12, Vero and human medulloblastoma cells. At least two portions of the 190 bp fragment bind to Brn3a. In addition, Brn3a increased endogenous levels of trkA transcripts in PC12 cells and initiated trkA expression in medulloblastoma cells, which normally do not express trkA. <p>The second step was to determine the effects of HCF and Zhangfei association with Brn3a on trkA trans-activation. I found that Brn3a required HCF for activating the trkA promoter and that Zhangfei has a suppressive effect over Brn3a-trkA activation in non-neuronal cells. In sympathetic neuron-like NGF-treated PC12 cells, Zhangfei did not suppress the ability of Brn3a to activate the TrkA promoter, however, Zhangfei was able capable of inducing the expression of TrkA in the absence of Brn3a. Both Brn3a and Zhangfei induced the expression of endogenous trkA in PC12 cells.<p>Since Vero and PC12 cells are not from human origin I wanted to examine the ability of Zhangfei to induce trkA transcription in medulloblastoma cells, that because of its tumor nature do not express trkA. TrkA transfections in these cells have shown to drive them to cell arrest or apoptosis. Since Zhangfei is not express in medulloblastoma tumors I then used ONS-76 medulloblastoma cells as a model to determine Zhangfeis envolvement in the NGF-trkA signaling pathway.<p> I show herein that in ONS-76 medulloblastoma cells resveratrol, an inducer of apoptosis and differentiation, increased the expression of Zhangfei and trkA as well as Early Growth Response Gene 1 (Egr1), a gene normally activated by NGF-trkA signalling. ONS-76 cells stop growing soon after treatment with resveratrol and a portion of the cell undergo apoptosis. While the induction of Zhangfei in resveratrol-treated cells was modest albeit consistent, the infection of actively growing medulloblastoma cells with an adenovirus vector expressing Zhangfei mimicked the effects of resveratrol. Zhangfei activated the expression of trkA and Egr1 and caused these cells to display markers of apoptosis. The phosphorylation of Erk1, an intermediate kinase in the NGF-trkA signaling critical for differentiation, was observed in Zhangfei infected cells, supporting the hypothesis that Zhangfei is a mediator of trkA-NGF signaling in theses cells leading either to differentiation or apoptosis. Binding of HCF by Zhangfei did not appear to be required for this effect as a mutant of Zhangfei incapable of binding HCF was also able to induce the expression of trkA and Egr1. <p>In in vivo and in vitro models of HSV-1 latency, the virus reactivates when NGF supply to the neuron is interrupted. Based on the above evidence Zhangfei, in HSV-1 latently infected neurons, would have the ability to prolong a state of latency by inducing trkA expression allowing the activation of NGF-trkA signaling pathway. Since NGF is produced by many cell types it is possible that reactivation is triggered not by a decrease in NGF but by a down-regulation of TrkA expression.Therefore, if Zhangfei expression is suppress the trkA signaling could be interrupted or shifted towards apoptosis signaling, this would allow neuronal HCF-binding proteins like Luman, which can activate HSV IE expression, to initiate HSV IE expression and subsequently viral replication.
4

The effect of brn3a and zhangfei on the nerve growth factor receptor, trkA.

Valderram Linares, Ximena Paola 30 August 2007 (has links)
Herpes simplex viruses (HSV) establish latent infections in sensory neurons of their host and are maintained in this state by little understood mechanisms that, at least in part, are regulated by signalling through nerve growth factor (NGF) and its receptor tropomyosin related kinase, trkA. Previous studies have demonstrated that Zhangfei is a transcriptional factor that is expressed in differentiated neurons and is thought to influence HSV replication and latency. Zhangfei, like the HSV trans-activator VP16 and Luman, binds the ubiquitous nuclear protein host cell factor (HCF) inhibiting the ability of VP16 and Luman to initiate HSV replication. <p>Recently, Brn3a, another neuronal factor thought to influence HSV latency and reactivation was found to possess an HCF-binding domain and could potentially require HCF for activity. The neuronal POU IV domain protein, Brn3a, among its many regulatory functions has been described as an enhancer of the NGF receptor trkA, during development in mouse. I therefore investigated the possible link between Brn3a, TrkA, NGF signaling, HCF, Zhangfei and HSV-1 latency and reactivation. I hypothesized that Zhangfei would also suppress the ability of Brn3a to activate the expression of TrkA and that this would have an impact on NGF-TrkA signaling and, consequently on HSV-1 reactivation from latency.<p>My first study determined which Brn3a/trkA promoter interactions were important for trkA transcription. I constructed a plasmid that contains 1043 base pairs of genomic sequences that extend from 30 nucleotides upstream of trkA coding region. In contrast to previous data, a short 190 bp region that lies proximal to the trkA initiation codon was sufficient for Brn3a trans-activation in NGF-differentiated PC12, Vero and human medulloblastoma cells. At least two portions of the 190 bp fragment bind to Brn3a. In addition, Brn3a increased endogenous levels of trkA transcripts in PC12 cells and initiated trkA expression in medulloblastoma cells, which normally do not express trkA. <p>The second step was to determine the effects of HCF and Zhangfei association with Brn3a on trkA trans-activation. I found that Brn3a required HCF for activating the trkA promoter and that Zhangfei has a suppressive effect over Brn3a-trkA activation in non-neuronal cells. In sympathetic neuron-like NGF-treated PC12 cells, Zhangfei did not suppress the ability of Brn3a to activate the TrkA promoter, however, Zhangfei was able capable of inducing the expression of TrkA in the absence of Brn3a. Both Brn3a and Zhangfei induced the expression of endogenous trkA in PC12 cells.<p>Since Vero and PC12 cells are not from human origin I wanted to examine the ability of Zhangfei to induce trkA transcription in medulloblastoma cells, that because of its tumor nature do not express trkA. TrkA transfections in these cells have shown to drive them to cell arrest or apoptosis. Since Zhangfei is not express in medulloblastoma tumors I then used ONS-76 medulloblastoma cells as a model to determine Zhangfeis envolvement in the NGF-trkA signaling pathway.<p> I show herein that in ONS-76 medulloblastoma cells resveratrol, an inducer of apoptosis and differentiation, increased the expression of Zhangfei and trkA as well as Early Growth Response Gene 1 (Egr1), a gene normally activated by NGF-trkA signalling. ONS-76 cells stop growing soon after treatment with resveratrol and a portion of the cell undergo apoptosis. While the induction of Zhangfei in resveratrol-treated cells was modest albeit consistent, the infection of actively growing medulloblastoma cells with an adenovirus vector expressing Zhangfei mimicked the effects of resveratrol. Zhangfei activated the expression of trkA and Egr1 and caused these cells to display markers of apoptosis. The phosphorylation of Erk1, an intermediate kinase in the NGF-trkA signaling critical for differentiation, was observed in Zhangfei infected cells, supporting the hypothesis that Zhangfei is a mediator of trkA-NGF signaling in theses cells leading either to differentiation or apoptosis. Binding of HCF by Zhangfei did not appear to be required for this effect as a mutant of Zhangfei incapable of binding HCF was also able to induce the expression of trkA and Egr1. <p>In in vivo and in vitro models of HSV-1 latency, the virus reactivates when NGF supply to the neuron is interrupted. Based on the above evidence Zhangfei, in HSV-1 latently infected neurons, would have the ability to prolong a state of latency by inducing trkA expression allowing the activation of NGF-trkA signaling pathway. Since NGF is produced by many cell types it is possible that reactivation is triggered not by a decrease in NGF but by a down-regulation of TrkA expression.Therefore, if Zhangfei expression is suppress the trkA signaling could be interrupted or shifted towards apoptosis signaling, this would allow neuronal HCF-binding proteins like Luman, which can activate HSV IE expression, to initiate HSV IE expression and subsequently viral replication.
5

The Analysis of Brn3a and Thy1-CFP as Potential Markers of Retinal Ganglion Cells after Optic Nerve Injury in Mice

Levesque, Julie 28 May 2013 (has links)
Purpose: Retinal ganglion cell (RGC) loss is a measure of the progression of many visual disorders. It is important to identify RGCs with good specificity, so RGC numbers can be reliably analyzed. The purpose of this study was to analyze the effectiveness of two current RGC markers: Brn3a immunohistochemistry and the expression of Thy1-CFP in the Thy1-CFP transgenic mouse. Methods: Rhodamine-?-isothiocyanate (RITC) retrograde labeling, immunohistochemistry, wholemount retinal imaging, western blot, cross sectional analysis and cell densities in uninjured control animals and 3, 5, 7 and 14 days post-optic nerve crush (ONC) or transection (ONT) were tabulated. Results: Brn3a positive (Brn3a+) cell density was significantly less than RITC positive (RITC+) cell density in control mice. After ON injury, Brn3a+ cell density did not decrease at the same rate as RITC+ cell density. The density of RGCs that express Brn3a was significantly less than the individual Brn3a+ and RITC+ cell density at all experimental time points. Thy1-CFP positive (Thy1-CFP+) cell density was significantly less than RITC+ in control mice and significantly more than RITC+ cell density 14 days after ON injury. Thy1-CFP co-localized with ChAT positive (ChAT+) cells 7 days after ONT. Conclusion: Brn3a and Thy1-CFP are not reliable markers of RGCs. Retrograde labeling remains one of the most reliable methods of labeling RGCs in mice.
6

Modulation of the Progenitor Cell and Homeostatic Capacities of Müller Glia Cells in Retina : Focus on α2-Adrenergic and Endothelin Receptor Signaling Systems

Harun-Or-Rashid, Mohammad January 2016 (has links)
Müller cells are major glial cells in the retina and have a broad range of functions that are vital for the retinal neurons. During retinal injury gliotic response either leads to Müller cell dedifferentiation and formation of a retinal progenitor or to maintenance of mature Müller cell functions. The overall aim of this thesis was to investigate the intra- and extracellular signaling of Müller cells, to understand how Müller cells communicate during an injury and how their properties can be regulated after injury. Focus has been on the α2-adrenergic receptor (α2-ADR) and endothelin receptor (EDNR)-induced modulation of Müller cell-properties after injury. The results show that α2-ADR stimulation by brimonidine (BMD) triggers Src-kinase mediated ligand-dependent and ligand-independent transactivation of epidermal growth factor receptor (EGFR) in both chicken and human Müller cells. The effects of this transactivation in injured retina attenuate injury-induced activation and dedifferentiation of Müller cells by attenuating injury-induced ERK signaling. The attenuation was concomitant with a synergistic up-regulation of negative ERK- and RTK-feedback regulators during injury. The data suggest that adrenergic stress-signals modulate glial responses during retinal injury and that α2-ADR pharmacology can be used to modulate glial injury-response. We studied the effects of this attenuation of Müller cell dedifferentiation on injured retina from the perspective of neuroprotection. We analyzed retinal ganglion cell (RGC) survival after α2-ADR stimulation of excitotoxically injured chicken retina and our results show that α2-ADR stimulation protects RGCs against the excitotoxic injury. We propose that α2-ADR-induced protection of RGCs in injured retina is due to enhancing the attenuation of the glial injury response and to sustaining mature glial functions. Moreover, we studied endothelin-induced intracellular signaling in Müller cells and our results show that stimulation of EDNRB transactivates EGFR in Müller cells in a similar way as seen after α2-ADR stimulation. These results outline a mechanism of how injury-induced endothelins may modulate the gliotic responses of Müller cells. The results obtained in this thesis are pivotal and provide new insights into glial functions, thereby uncovering possibilities to target Müller cells by designing neuroprotective treatments of retinal degenerative diseases or acute retinal injury.

Page generated in 0.0467 seconds