1 |
Study of Broad-band Quantum Structure Grown by Molecular Beam EpitaxyChen, Chun-Yang 28 July 2010 (has links)
The thesis focuses on the study of asymmetric multiple quantum wells(AMQWs) grown by molecular beam epitaxy (MBE) in the Riber Compact 21T MBE system. We investigate AMQW structures in which the well width is varied but the material compositions of the wells and the barriers are kept constant. Also, we have investigated AMQWs with p-type modulation doping at the barrier region and the AMQWs of different well widths without changing the well compositions. The AMQW samples are obtained the emission spectra by using photoluminescence (PL), electroluminescence (EL), photo-current and photoreflectance (PR) in the experiments. Also, The AMQW samples (AMQ100-70-40 and AMQ-100-MD70-40) are fabricated into laser diodes to obtain the characteristics of device in this study. The threshold current density Jth of laser diode is measured about 2 kA/cm2.The internal quantum efficiency £bi and the absorption £\ of AMQ-100-70-40 are 34.7% and 9.47 cm-1 respectively. The internal quantum efficiency £bi and the absorption £\ of AMQ-100-MD70-40 are 22.2% and 10.56 cm-1 respectively. Moreover, we present the InGaAsP AMQW samples grown by MOCVD to compare with the InGaAs/InAlGaAs AMQW samples. The broad-band property is valuable for application of optical communication. It is highly desirable to have broadly tunable lasers and broad-band semiconductor optical amplifiers (SOAs) in the 1.3 or 1.55£gm to handle more number of channels increasing the volume of information traffic for future optical communication networks. The band-band light source is also desirable in medical science for the optical coherence tomography (OCT).
|
Page generated in 0.0646 seconds