1 |
A genetic algorithm approach for three-phase harmonic mitigation filter designZubi, Hazem M. January 2013 (has links)
In industry, adjustable speed drives (ASDs) are widely employed in driving AC motors for variable speed applications due to the high performance and high energy efficiency obtained in such systems. However, ASDs have an impact on the power quality and utilisation of AC power feeds by injecting current harmonics and causing resonances, additional losses, and voltage distortion at the point of common coupling. Due to these problems, electric power utilities have established stringent rules and regulations to limit the effects of this distortion. As a result, efficient, reliable, and economical harmonic mitigation techniques must now be implemented in practical systems to achieve compliance at reasonable cost. A variety of techniques exist to control the harmonic current injected by ASDs, and allow three-phase AC-line-connected medium-power systems to meet stringent power quality standards. Of these, the broadband harmonic passive filter deserves special attention because of its good harmonic mitigation and reactive power compensation abilities, and low cost. It is also relatively free from harmonic resonance problems, has relatively simple structural complexity and involves considerably less engineering effort when compared to systems of single tuned shunt passive filters or active filters and active rectifier solutions. In this thesis, passive broadband harmonic filters are investigated. In particular, the improved broadband filter (IBF) which has superior overall performance and examples of its application are increasing rapidly. During this research project, the IBF operating principle is reviewed and its design principles are established. As the main disadvantage of most passive harmonic filters is the large-sized components, the first proposed design attempts to optimize the size of the filter components (L and C) utilized in the existing IBF topology. The second proposed design attempts to optimize the number and then the size of filter components resulting in an Advanced Broadband passive Filter (ABF) novel structure. The proposed design methods are based on frequency domain modelling of the system and then using a genetic algorithm optimization technique to search for optimal filter component values. The results obtained are compared with the results of a linear searching approach. The measured performance of the optimal filter designs (IBF and ABF) is evaluated under different loading conditions with typical levels of background voltage distortion. This involves assessing input current total harmonic distortion, input power factor, rectifier voltage regulation, efficiency, size and cost. The potential resonance problem is addressed and the influence of voltage imbalance on performance is investigated. The assessment is based on analysis, computer simulations and experimental results. The measured performance is compared to various typical passive harmonic filters for three-phase diode rectifier front-end type adjustable speed drives. Finally, the broadband filter design’s effectiveness and performance are evaluated by involving them in a standard IEEE distribution network operating under different penetration levels of connected nonlinear total loads (ASD system). The study is conducted via detailed modelling of the distribution network and the linked nonlinear loads using computer simulations.
|
2 |
EFFICIENT FILTER DESIGN AND IMPLEMENTATION APPROACHES FOR MULTI-CHANNEL CONSTRAINED ACTIVE SOUND CONTROLYongjie Zhuang (6730208) 21 July 2023 (has links)
<p>In many practical multi-channel active sound control (ASC) applications, such as active noise control (ANC), various constraints need to be satisfied, such as the robust stability constraint, noise amplification constraint, controller output power constraints, etc. One way to enforce these constraints is to add a regularization term to the Wiener filter formulation, which, by tuning only a single parameter, can over-satisfy many constraints and degrade the ANC performance. Another approach for non-adaptive ANC filter design that can produce better ANC performance is to directly solve the constrained optimization problem formulated based on the <em>H</em><sub>2</sub>/<em>H</em><sub>inf</sub> control framework. However, such a formulation does not result in a convex optimization problem and its practicality can be limited by the significant computation time required in the solving process. In this dissertation, the traditional <em>H</em><sub>2</sub>/<em>H</em><sub>inf</sub> formulation is convexified and a global minimum is guaranteed. It is then further reformulated into a cone programming formulation and simplified by exploiting the problem structure in its dual form to obtain a more numerically efficient and stable formulation. A warmstarting strategy is also proposed to further reduce the required iterations. Results show that, compared with the traditional methods, the proposed method is more reliable and the computation time can be reduced from the order of days to seconds. When the acoustic feedback path is not strong enough to cause instability, then only constraints that prevent noise amplification outside the desired noise control band are needed. A singular vector filtering method is proposed to maintain satisfactory noise control performance in the desired noise reduction bands while mitigating noise amplification.</p>
<p><br></p>
<p>The proposed convex conic formulation can be used for a wide range of ASC applications. For example, the improvement in numerical efficiency and stability makes it possible to apply the proposed method to adaptive ANC filter design. Results also show that compared with the conventional constrained adaptive ANC method (leaky FxLMS), the proposed method can achieve a faster convergence rate and better steady-state noise control performance. The proposed conic method can also be used to design the room equalization filter for sound field reproduction and the hear-through filter design for earphones.</p>
<p><br></p>
<p>Besides efficient filter design methods, efficient filter implementation methods are also developed to reduce real-time computations in implementing designed control filters. A polyphase-structure-based filter design and implementation method is developed for ANC systems that can reduce the computation load for high sampling rate real-time filter implementation but does not introduce an additional time delay. Results show that, compared with various traditional low sampling rate implementations, the proposed method can significantly improve the noise control performance. Compared with the non-polyphase high-sampling rate method, the real-time computations that increase with the sampling rate are improved from quadratically to linearly. Another efficient filter implementation method is to use the infinite impulse response (IIR) filter structure instead of the finite impulse response (FIR) filter structure. A stable IIR filter design approach that does not need the computation and relocation of poles is improved to be applicable in the ANC applications. The result demonstrated that the proposed method can achieve better fitting accuracy and noise control performance in high-order applications.</p>
|
Page generated in 0.0781 seconds