Spelling suggestions: "subject:"bubbleparticle interaction"" "subject:"rubberparticle interaction""
1 |
Experimental Study of Multi-phase Flow Hydrodynamics in Stirring TanksYang, Yihong 06 May 2011 (has links)
Stirring tanks are very important equipments used for mixing, separating, chemical reaction, etc. A typical stirring tank is a cylindrical vessel with an agitator driving the fluid and generating turbulence to promote mixing. Flotation cells are widely used stirring tanks in phase separation where multiphase flow is involved. Flotation refers to the process in which air bubbles selectively pick up hydrophobic particles and separate them from hydrophilic solids. This technology is used throughout the mining industry as well as the chemical and petroleum industries.
In this research, efforts were made to investigate the multi-phase flow hydrodynamic problems of some flotation cells at different geometrical scales. Pitot-static and five-hope probes were employed to lab- pilot- and commercial-scale tanks for velocity measurements. It was found that the tanks with different scales have similar flow patterns over a range of Reynolds numbers. Based on the velocity measurement results, flotation tanks' performance was evaluated by checking the active volume in the bulk. A fast-response five-hole probe was designed and fabricated to study the turbulence characteristics in flotation cells under single- and multi-phase flow conditions. The jet stream in the rotor-stator domain has much higher turbulence intensity compared with other locations. The turbulent dissipation rate (TDR) in the rotor-stator domain is around 20 times higher than that near tank's wall. The TDR could be used to calculate the bubble and particle slip velocities. An isokinetic sampling probe system was developed to obtain true samples inthe multi-phase flow and then measure the local void fraction. It was found that the air bubbles are carried out by the stream and dispersed to the whole bulk. However, some of the bubbles accumulate in the inactive regions, where higher void fractions were detected. The isokinetic sampling probe was then extended to be an isokinetic borescope system, which was used to detect the bubble-particle aggregates in the tank. Aggregates were found in the high-turbulence level zones. The isokinetic sampling probe and the isokinetic borescope provide new methods for flotation tank tests. An experiment was also set up to study the dynamics of bubble particle impact. Four different modes were found for the collision. The criterion is that if the fluid drainage time is less than the residence time, the attachment will occur, otherwise, the particle will bounce back. / Ph. D.
|
Page generated in 0.1469 seconds