Spelling suggestions: "subject:"bubble formation""
1 |
Comportement du xénon et de l'hélium dans le carbure de silicium : applications au domaine de l'énergie nucléaire (fission et fusion) / Xenon and helium behavior in silicon carbide : applications for nuclear energy (fission and fusion)Baillet, Joffrey 29 November 2016 (has links)
Ce travail de thèse s'inscrit dans le cadre des recherches menées sur les matériaux envisagés pour servir dans les réacteurs nucléaires du futur. Parmi ces matériaux, se trouve le carbure de silicium qui est envisagé comme matériau d'enrobage et de gainage du combustible dans les réacteurs à fission ou comme matériau face au plasma ou constituant les couvertures tritigènes dans les réacteurs à fusion (concept DEMO). Des échantillons de β-SiC ont été frittés par Spark Plasma Sintering. Deux gaz rares abondamment produits en réacteur, le xénon et l'hélium, ont été implantés dans SiC à température ambiante et à plusieurs fluences (Φ1 Xe = 5.1015 at.cm-2 et Φ2 Xe = 1.1017 at.cm-2 pour le xénon et Φ1 He = 5.1015 at.cm-2, Φ2 He = 1.1017 at.cm-2 et Φ3 He = 1.1018 at.cm-2 pour l'hélium). Les échantillons irradiés en xénon ont ensuite été recuits à différentes températures (400 °C, 700 °C et 1000 °C). Une amorphisation complète du matériau a été observée pour toutes les fluences sauf Φ1 He (dpamax = 0,2) ainsi qu'une oxydation notable pour les plus hautes fluences. Un seuil de concentration de formation de bulles dans SiC a pu être déterminé pour l'hélium et le xénon. La coalescence de ces bulles à forte concentration s'est traduite par la formation de cloques sur la surface dans le cas de l'implantation à Φ3 He. A Φ2 Xe, des bulles de plusieurs centaines de nanomètres se sont formées dans la phase oxyde (SiO2 amorphe) alors que la coalescence reste très limitée au sein de la phase SiC résiduelle (nanobulles). Aucun relâchement des espèces implantées n a été mesuré jusqu'à une fluence de 1017 at.cm-2. A Φ3 He, un relâchement important d'hélium s'est produit pendant l'implantation, ce qui indique un effet de saturation dans le matériau. Après traitement thermique à 1000 °C, un relâchement conséquent du xénon contenu initialement dans la phase oxyde a été mesuré alors que le xénon contenu dans la phase SiC semble mieux retenu / This work is part of studies on the proposed materials to be used in future nuclear reactors. Among these materials is silicon carbide, which could be used as a cladding or coating material for the fuel in fission reactors, or as a constituent of plasma facing component or breeding blankets in fusion reactors (DEMO concept). β-SiC samples were synthetized by spark plasma sintering. Two rare gases abundantly produced in reactor, xenon and helium, were implanted in SiC at room temperature and at several fluences (Φ1 Xe = 5.1015 at.cm-2 and Φ2 Xe = 1.1017 at.cm-2 for xenon, Φ1 He = 5.1015 at.cm-2, Φ2 He = 1.1017 at.cm-2 and Φ3 He = 1.1018 at.cm-2 for helium). Xenon irradiated samples were then annealed for two hours at different temperatures (400 °C, 700 °C and 1000 °C). A complete amorphization of the material is observed for all fluences except for Φ1 He (maximum dpa level ≈ 0.2). A significant oxidation is observed for the highest fluences. A threshold concentration for bubble formation has been determined for both species. Bubble coalescence at high concentration results in the surface blistering at Φ3 He. Bubbles of several hundred nanometers were formed in the oxide phase (SiO2) after irradiation at Φ2 Xe, while remaining SiC islands are less subject to coalescence (nanometric bubbles). No gas release could be demonstrated up to a fluence of 1017 at.cm-2. For Φ3 He = 1018 at.cm-2, a significant helium release occurs that could indicate a saturation effect within the material. During thermal treatment at 1000 °C, xenon is retained by carbide phase and highly released by oxide phase
|
Page generated in 0.1243 seconds