• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 313
  • 92
  • 64
  • 34
  • 32
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 6
  • 6
  • 5
  • Tagged with
  • 801
  • 221
  • 188
  • 140
  • 124
  • 124
  • 121
  • 97
  • 76
  • 68
  • 68
  • 65
  • 64
  • 59
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Effects of Voids on Delamination Growth in Composite Laminates under Compression

Zhuang, Linqi 14 March 2013 (has links)
Polymer matrix composites are widely used as structural components in the aerospace industry and wind turbine industry etc. to take advantage of their unique mechanical properties and weight saving ability. Although there have been considerable developments in analyzing delamination growth and effects of voids on certain mechanical properties of composites, none of the present literatures investigates the effects of voids on delamination growth under compression. In this research, a parametric study is performed to investigate the effects of voids on delamination growth in composite laminates under compression. In composite structures, delamination would be created by eccentricities in structural load path, structural discontinuities, and during manufacturing and maintenance processes. Also, the service damage such as the impact of foreign objects may also result in delamination. In the Finite Element model developed, a through-width surface delamination is assumed, and void is placed in critical locations ahead of crack tip. Strain Energy Release Rate (SERR) is calculated by the Virtual Crack Closure Technique (VCCT) in order to study the delamination growth. It is found that the delamination front experiences a mixed-mode delamination behavior when local out-of-plane buckling occurs. During the loading, Mode II SERR increases monotonically while Mode I SERR increases first and then decreases as the delamination front starts to close. Meanwhile, Mode II SERR is found to be much larger than the Mode I component. The presence of void does not significantly alter the transverse displacement of the delaminated part. However, the presence of void increases the Mode II SERR, as well as the total SERR, and this increase depends on the size and location of void. For Mode I SERR, the effect of void is not that prominent.
132

Optimum design of a composite outer wing subject to stiffness and strength constraints

Liu, Yifei 01 1900 (has links)
Composite materials have been more and more used in aircraft primary structures such as wing and fuselage. The aim of this thesis is to identify an effective way to optimize composite wing structure, especially the stiffened skin panels for minimum weight subject to stiffness and strength constraints. Many design variables (geometrical dimensions, ply angle proportion and stacking sequence) are involved in the optimum design of a composite stiffened panel. Moreover, in order to meet practical design, manufacturability and maintainability requirements should be taken into account as well, which makes the optimum design problem more complicated. In this thesis, the research work consists of three steps: Firstly, attention is paid to metallic stiffened panels. Based on the study of Emero’s optimum design method and buckling analysis, a VB program IPO, which employs closed form equations to obtain buckling load, is developed to facilitate the optimization process. The IPO extends the application of Emero’s method to an optimum solution based on user defined panel dimensional range to satisfy practical design constraints. Secondly, the optimum design of a composite stiffened panel is studied. Based on the research of laminate layup effects on buckling load and case study of bucking analysis methods, a practical laminate database (PLDB) concept is presented, upon which the optimum design procedure is established. By employing the PLDB, laminate equivalent modulus and closed form equations, a VB program CPO is developed to achieve the optimum design of a composite stiffened panel. A multi-level and step-length-adjustable optimization strategy is applied in CPO, which makes the optimization process efficient and effective. Lastly, a composite outer wing box, which is related to the author’s GDP work, is optimized by CPO. Both theoretical and practical optimum solutions are obtained and the results are validated by FE analysis.
133

Durability of Polymer Composite Materials

Liu, Liu 13 October 2006 (has links)
The purpose of this research is to examine structural durability of advanced composite materials under critical loading conditions, e.g., combined thermal and mechanical loading and shear fatigue loading. A thermal buckling model of a burnt column, either axially restrained or under an axial applied force was developed. It was predicted that for a column exposed to the high heat flux under simultaneous constant compressive load, the response of the column is the same as that of an imperfection column; the instability of the burnt column happens. Based on the simplified theoretical prediction, the post-fire compressive behavior of fiberglass reinforced vinyl-ester composite columns, which have been exposed to high heat flux for a certain time was investigated experimentally, the post-fire compressive strength, modulus and failure mode were determined. The integrity of the same column under constant compressive mechanical loading combined with heat flux exposure was examined using a specially designed mechanical loading fixture that mounted directly below a cone calorimeter. All specimens in the experiments exhibited compressive instability. The experimental results show a thermal bending moment exists and has a significant influence on the structural behavior, which verified the thermal buckling model. The trend of response between the deflection of the column and exposure time is similar to that predicted by the model. A new apparatus was developed to study the monotonic shear and cyclic-shear behavior of sandwich structures. Proof-of-concept experiments were performed using PVC foam core polymeric sandwich materials. Shear failure occurred by the extension of cracks parallel to the face-sheet/core interface, the shear modulus degraded with the growth of fatigue damage. Finite element analysis was conducted to determine stress distribution in the proposed specimen geometry used in the new technique. Details for a novel apparatus used for the fatigue testing of thin films and face sheets are also provided.
134

Design and testing of piezoelectric sensors

Mika, Bartosz 15 May 2009 (has links)
Piezoelectric materials have been widely used in applications such as transducers, acoustic components, as well as motion and pressure sensors. Because of the material’s biocompatibility and flexibility, its applications in biomedical and biological systems have been of great scientific and engineering interest. In order to develop piezoelectric sensors that are small and functional, understanding of the material behavior is crucial. The major objective of this research is to develop a test system to evaluate the performance of a sensor made from polyvinylidene fluoride and its uses for studying insect locomotion and behaviors. A linear stage laboratory setup was designed and built to study the piezoelectric properties of a sensor during buckling deformation. The resulting signal was compared with the data obtained from sensors attached a cockroach, Blaberus discoidalis. Comparisons show that the buckling generated in laboratory settings can be used to mimic sensor deformations when attached to an insect. An analytical model was also developed to further analyze the test results. Initial analysis shows its potential usefulness in predicting the sensor charge output. Additional material surface characterization studies revealed relationships between microstructure properties and the piezoelectric response. This project shows feasibility of studying insects with the use of polyvinylidene fluoride sensors. The application of engineering materials to insect studies opens the door to innovative approaches to integrating biological, mechanical and electrical systems.
135

Ultimate Limit State Response of Reinforced Concrete Columns for Use in Performance-Based Analysis and Design

Urmson, Christopher R. 2010 August 1900 (has links)
The design of reinforced concrete structures for extreme events requires accurate predictions of the ultimate rotational capacity of critical sections, which is dictated by the failure mechanisms of shear, hoop fracture, low-cycle fatigue and longitudinal bar buckling. The purpose of this research is to develop a model for the full compressive behavior of longitudinal steel including the effects of bar buckling. A computational algorithm is developed whereby experimental data can be rigorously modeled. An analytical model is developed from rational mechanics for modeling the complete compressive stress-strain behavior of steel including local buckling effects. The global buckling phenomenon is then investigated in which trends are established using a rigorous computational analysis, and a limit analysis is used to derive simplified design and analysis equations. The derived buckling models are incorporated into wellestablished sectional analysis routines to predict full member behavior, and the application of these routines is demonstrated via an incremental dynamic analysis of a ten-storey reinforced concrete building. The buckling models and the sectional analysis routine compare favorably with experimental data. Design recommendations and topics for further research are presented.
136

Wrinkling of sandwich panels for marine applications

Fagerberg, Linus January 2003 (has links)
<p>The recent development in the marine industry with largerships built in sandwich construction and also the use of moreadvanced materials has enforced improvements of design criteriaregarding wrinkling. The commonly used Hoff’s formula isnot suited for the highly anisotropic fibre reinforced sandwichface sheets of today.</p><p>The work presented herein investigates the wrinklingphenomenon. A solution to wrinkling of anisotropic sandwichplates subjected to multi-axial loading is presented. Thesolution includes the possibility of skew wrinkling where thewrinkling waves are not perpendicular to the principal loaddirection. The wrinkling angle is obtained from the solutiontogether with the maximum wrinkling load. This method has beensupported with tests of anisotropic plates subjected touni-axial and bi-axial loading.</p><p>The effect of the face sheet local bending stiffness showsthe importance of including the face sheet stacking sequence inthe wrinkling analysis. The work points out the influence ofthe face sheet local bending stiffness on wrinkling. Threedifferent means of improving the wrinkling load except changingcore material is evaluated. The effect of the differentapproaches is evaluated theoretically and also throughcomparative testing. The transition between wrinkling and pureface sheet compression failure is investigated. Theoreticaldiscussions are compared with compressive test results of twodifferent face sheet types on seven different core densities.The failure modes are investigated using fractography. Theresults clearly show how the actual sandwich compressionfailure mode is influenced by the choice of core material,changing from wrinkling failure to face sheet micro bucklingfailure as the modulus density increases.</p><p>Finally, a new approach is presented where the wrinklingproblem is transferred from a pure stability problem to amaterial strength criterion. The developed theory providesmeans on how to decide which sandwich constituent will failfirst and at which load it will fail. The method give insightto and develop the overall understanding of the wrinklingphenomenon. A very good correlation is found when the developedtheory is compared with both finite element calculations and toexperimental tests.</p><p><b>Keywords:</b>wrinkling, local buckling, imperfection,stability, anisotropy, sandwich</p>
137

Buckling of composite plates subjected to biaxial loading /

Singhatanadgid, Pairod. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 133-139).
138

Scaling of the buckling transition of ridges in thin sheets /

DiDonna, Brian Anthony. January 2001 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Physics, 2001. / Includes bibliographical references. Also available on the Internet.
139

Axisymmetric buckling of annular sandwich panels.

Amato, Amelio John, January 1970 (has links)
Thesis--University of Florida, 1970. / Manuscript copy. Vita. Description based on print version record. Bibliography: leaves 171-183.
140

Finite element analysis of cell subjected to compressive loading

Venkatesan, Vidhyashankar. January 2002 (has links)
Thesis (M.S.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains xii, 123 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 84-88).

Page generated in 0.4314 seconds