• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of Out-of-Order Delivery in DiffServ Networks

Jheng, Bo-Wun 14 September 2006 (has links)
Packet reordering is generally considered to have negative impact on network performance. In this thesis, the packet reordering is used to assist TCP to recover faster in RED-enabled packet switched networks. The RED queue management prevents networks from congestion by dropping packets with a probability earlier than the time when congestion would actually occur. After a RED router drops a packet, packer reordering is introduced during TCP¡¦s recovery process. A new, simple buffer mechanism, called RED with Recovery Queue or R2Q, is proposed to create this type of packet reordering on behalf of TCP with the objective of accelerating TCP¡¦s recovery and thus improving the overall network performance. In R2Q, the original RED queue is segmented into two sub-queues. The first sub-queue remains the function of the original RED while the second picks up the packets discarded by the first. Then, scheduling of the second-chance transmission of the packets in the secondary sub-queue is the key in achieving our objective. In this thesis, we considered two scheduling schemes: priority and weighted round robin. To evaluate the performance of R2Q with these two scheduling schemes, we implemented and evaluated them in the J-Sim network simulation environment. The well-known dumbbell network topology was adopted and we varied different parameters, such as round-trip time, bottleneck bandwidth, buffer size, WRR weight and so on, in order to understand how R2Q performs under different network configurations. We found that R2Q is more effective in the networks of sufficient buffer and larger product of RTT and bandwidth. With WRR, we may achieve as much as 2% improvement over the original RED. The improvement may be more in networks of even higher speed.

Page generated in 0.0651 seconds