1 |
Integrated Life Cycle Assessment (LCA) to Building Information Modelling (BIM) / Integrerad Livscykelanalys Inom Building Information ModellingKöseci, Firat Can January 2018 (has links)
Building Information Modelling (BIM) and Life Cycle Assessment (LCA) are at the core of construction projects. LCA is one of the key elements of sustainability in the construction projects and an improved LCA process can be achieved through the adoption of BIM. Exploring the characteristics of a BIM-based LCA process from the different perspectives of interoperability and identifying the effects of adopting regionally different EPD databases are significant. The LCA add-in tools, One Click LCA and Tally, have been selected to identify the differences in the LCA results caused by adopting regionally different Environmental Product Declaration (EPD) databases. To observe the differences in the LCA results, the LCA processes were run through the LCA add-in tools. The input data, the system boundaries and the LCA scope were kept the same for the LCA processes. The LCA results were produced through the integrated LCA add-in tools. The GWP values in manufacturing module, produced by One Click LCA, were embedded into the Solibri model of Akademiska Sjukhuset project. Value level of interoperability in the BIM-based LCA processes was detected and analyzed according to the interaction types that were obtained between the LCA add-in tools and the BIM software. Obstacles in increasing the value level of interoperability to a higher level in today’s BIM-based LCA processes were also focused. Furthermore, the benefits and drawbacks of the BIM-based LCA processes were identified. At last, the differences between BIM-based LCA and traditional LCA process were identified along with future possibilities. It was observed that adopting regionally different EPD databases has significant effects on the LCA results. The semantic detail level of the BIM model and the data extraction quality came to the forefront in identifying the benefits and drawbacks. The interaction types in the studied BIM-based LCA processes were identified as “Collaboration” interaction type. Accordingly, the value level of interoperability in both BIM-based LCA processes was obtained as the high level of value innovation along with efficiency and differentiation. Moreover, the convenience of use, time and resource efficiency and improved accuracy obtained through the BIM-based LCA processes were concluded as some of the major differences from the traditional LCA processes. / BIM (Building Information Modelling) och LCA (Life Cycle Assessment) ligger i kärnan av byggprojekt. LCA är ett nyckelverktyg för hållbarhetsarbete i byggbranschen och en förbättrad LCA-process kan uppnås i och med att tillämpa BIM-verktyg. BIM bjuder på många nyttor däremot detta arbete fokuserar på nyttan som BIM kan ge till LCA-processen. Därmed är forskning på grunden till Bim-baserad LCA-process och datas integrations- och konverteringsförmågan ytterst viktiga för detta arbete. LCA-verktyg One Click LCA och Tally och dess tillägg till CAD-mjukvaror har utvalts för att jämföra resultat vars indata är baserat på olika EPD-databaser (Environmental Product Declaration). För att iaktta skillnader i LCA-resultat, har LCA-processen gjorts med dessa LCA-verkytg. Indata, systemgränser och LCA-definitionsområde var samma för båda LCA-processer. LCA-resultat producerat av båda LCA-verktyg har jämförts utifrån klimatavtrycksperspektiv (Global Warming Potential) för materialframtagandesskede. One Click LCAs GWP-värden har importerats i en Solibri-modell för projektet. Slutligen har LCA-resultat av en Bim-baserad process jämförts med resultat av en klassisk LCA process. Påverkan av geografiskt anpassade EPD-databaser är avgörande för LCA-resultat. Materialframtagandesskede har störst miljöpåverkan i förhållande till andra livsskede. Semantisk detaljnivå av Solibri-modellen är avgörande för identifiering av för- och nackdelar av datas integrations- och konverteringsförmågan. Datainteraktionstyper studerade i BIM-baserade LCA-processer klassas som kollaborativ interaktionstyp. Integrations- och konverteringsförmåga av både BIM-baserade LCA-processer utvärderades på en hög nivå gällande förbättrade resultat, effektivitet och resultatkännslighet. Utöver dessa har BIM-baserade LCA-processer en förbättrad användbarhet och är mer tid- och resurseffektiva, vilka är huvudskillnader från en LCA-process utfört på klassiskt sätt.
|
2 |
A contextual AR model based system on-site construction planningMoore, Nigel Jonathan January 2013 (has links)
The creation of an effective construction schedule is fundamental to the successful completion of a construction project. Effectively communicating the temporal and spatial details of this schedule are vital, however current planning approaches often lead to multiple or misinterpretations of the schedule throughout the planning team. Four Dimensional Computer Aided Design (4D CAD) has emerged over the last twenty years as an effective tool during construction project planning. In recent years Building Information Modelling (BIM) has emerged as a valuable approach to construction informatics throughout the whole lifecycle of a building. Additionally, emerging trends in location-aware and wearable computing provide a future potential for untethered, contextual visualisation and data delivery away from the office. The purpose of this study was to develop a novel computer-based approach, to facilitate on-site 4D construction planning through interaction with a 3D construction model and corresponding building information data in outdoor Augmented Reality (AR). Based on a wide ranging literature review, a conceptual framework was put forward to represent software development requirements to support the sequencing of construction tasks in AR. Based on this framework, an approach was developed that represented the main processes required to plan a construction sequence using an onsite model based 4D methodology. Using this proposed approach, a prototype software tool was developed, 4DAR. The implemented tool facilitated the mapping of elements within an interactive 3D model with corresponding BIM data objects to provide an interface for two way communication with the underlying Industry Foundation Class (IFC) data model. Positioning data from RTK-GPS and an electronic compass enabled the geo-located 3D model to be registered in world coordinates and visualised using a head mounted display fitted with a ii forward facing video camera. The scheduling of construction tasks was achieved using a novel interactive technique that negated the need for a previous construction schedule to be input into the system. The resulting 4D simulation can be viewed at any time during the scheduling process, facilitating an iterative approach to project planning to be adopted. Furthermore, employing the IFC file as a central read/write repository for schedule data reduces the amount of disparate documentation and centralises the storage of schedule information, while improving communication and facilitating collaborative working practices within a project planning team. Post graduate students and construction professionals evaluated the implemented prototype tool to test its usefulness for construction planning requirements. It emerged from the evaluation sessions that the implemented tool had achieved the essential requirements highlighted in the conceptual framework and proposed approach. Furthermore, the evaluators expressed that the implemented software and proposed novel approach to construction planning had potential to assist with the planning process for both experienced and inexperienced construction planners. The following contributions to knowledge have been made by this study in the areas of 4D CAD, construction applications of augmented reality and Building Information Modelling; · 4D Construction Planning in Outdoor Augmented Reality (AR) · The development of a novel 4D planning approach through decomposition · The deployment of Industry Foundation Classes (IFC) in AR · Leveraging IFC files for centralised data management within real time planning and visualisation environment.
|
3 |
An investigation to introduce BIM in undergraduate civil engineering teaching to improve construction processesTabesh, Mahsa 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: The popularity of Building Information Modelling (BIM) has grown rapidly within the construction
industry, motivated by its potential advantages for improving construction processes. A majority of
the world’s leading firms have adopted BIM solutions by moving from 2D or even 3D CAD to BIM
techniques. However, for companies in South Africa this transition has not been the same as for firms
in Europe and the USA.
Besides the improvements which can be achieved by viewing a computer model of the designed
facility, BIM provides a multi-disciplinary tool, to be used for collaboration of all project parties in a
real-time simulated model of construction process. Due to this remarkable feature, the way of
constructing a designed facility can be viewed and analysed from the conceptual stages and can
improve design and construction processes.
As this object-oriented approach has been developed in the industry, handbooks and standards have
been released to support BIM utilization. A considerable amount of research has been conducted to
establish the advantages and barriers in applying BIM. A large number of investigations have also
been performed for reporting quantified achievement of construction projects executed in BIM
environment.
As such, a new knowledge field has been added to the industry requirements. BIM knowledge has
become more demanding and BIM-specialist requirements have been enhanced. As a result, academia
have been stimulated to raise BIM awareness among engineers, architects and construction managers
to train sufficiently qualified professionals for applying BIM tools. Universities started offering
different courses and programmes to fulfil this need while a variety of strategies have been developed
for introducing BIM to the students at different levels.
This research studied the current industry situation in South Africa regarding application of BIM and
the role of universities to achieve a suitable level of BIM capability. The industrial and educational
situations from some pioneering countries are reviewed as lessons for the South African adoption of
BIM. Comparing these facts, proposals for introducing BIM through university courses are provided
to satisfy industry requirements for the application of BIM in projects. / AFRIKAANSE OPSOMMING: Die gewildheid van Bou Inligtingsmodelle (Building Information Modelling (BIM)) het vinnig
gegroei in die konstruksie bedryf as gevolg van die voordele wat dit vir die verbetering van
konstruksieprosesse inhou. ʼn Groot aantal van die wêreld se voorste konstruksie maatskappye het al
die oorgang vanaf 2D en selfs 3D RGT (Rekenaar Gesteunde Tekenstelsels) na BIM gemaak.
Ongelukkig is hierdie oorgang na BIM metodes nog nie so doeltreffend vir maatskappye in Suid-
Afrika soos in die geval van Europese en Amerikaanse maatskappye nie.
Daar is al bewys dat die vermoë om na ʼn rekenaarmodel van ʼn ontwerpte fasiliteit te kan kyk baie
voordelig is. Daarbenewens bied BIM ʼn multidissiplinêre grondslag wat vir die samewerking van alle
betrokke partye van die projek gebruik kan word en die projek kan simuleer as ʼn funksie van tyd.
Hierdie tyd-afhanklike simulasie stel die bestuur in staat om die manier waarop ʼn ontwerpte fasiliteit
gebou word, reeds vanaf die konsepsuele fase, te beskou en te ontleed. Hierdie vermoë kan die
ontwerp en konstruksieproses asook die fasiliteitsbestuur proses merkwaardig verbeter.
As gevolg van die ontwikkeling van hierdie objek georiënteerde benadering deur die bedryf, is
handboeke en standaarde vrygestel om die gebruik van BIM te ondersteun. ‘n Merkwaardige
hoeveelheid navorsing is al gedoen om die voordele en struikelblokke in die toepassing van BIM te
identifiseer. ‘n Groot aantal ondersoeke is ook al geloots om verslag te doen op die prestasie van
konstruksie projekte wat deur middel van BIM uitgevoer was.
Vanuit die bogenoemde ondersoeke en navorsing is 'n nuwe kennisveld gevoeg by die vereistes van
die bedryf. Die kennis van BIM het al hoe meer veeleisend geword en die vereistes vir ʼn BIMspesialis
het verhoog. As gevolg hiervan is akademici aangemoedig om ingenieurs, argitekte en
konstruksie bestuurders meer bewus te maak van BIM sodat daar genoeg professionele werkers
opgelei kan word wat BIM kan implementeer. Universiteite het begin om kursusse en programme aan
te bied om hierdie behoefte te bevredig, terwyl 'n verskeidenheid metodes om studente bloot te stel
aan BIM op verskillende vlakke ontwikkel is.
In hierdie navorsingsprojek is die huidige stand van Suid-Afrikaanse konstruksiemaatskappye ten
opsigte van die toepassing van BIM ondersoek. Daarbenewens is die rol wat universiteite speel om 'n
voldoende vlak van BIM vaardigheid te bereik ook ondersoek. Die industriële en opvoedkundige
omgewings van 'n paar vooraanstaande lande word gebruik as lesse vir die Suid-Afrikaanse
aanvaarding van BIM. Deur hierdie feite te vergelyk, is voorstelle gemaak vir die bekendstelling van
BIM in universiteitskursusse om aan industrievereistes te voldoen vir die toepassing van BIM op
projekte.
|
4 |
Exploring the effectiveness of BIM for energy performance management of non-domestic buildingsGerrish, Tristan January 2017 (has links)
Following several years of research and development around the subject of BIM, its impact on the design and handover of buildings is now becoming visible across the construction industry. Changes in design procedures and information management methods indicate the potential for greater utilisation of a Common Data Environment in areas other than design. To identify how these changes are influencing the engineering design process, and adapt this process to the needs and requirements of building performance management requires consideration of multiple factors, relating mainly to the stakeholders and processes employed in these procedures. This thesis is the culmination of a four year Engineering Doctorate exploring how BIM could be used to support non-domestic building energy performance management. It begins with an introduction to the research aim and objectives, then presents a thorough review of the subject area and the methodologies employed for the research. Research is split between eight sequential tasks using literature review, interviews, data analysis and case-study application from which findings, conclusions and key recommendations are made. Findings demonstrate disparity between different information environments and provide insight into the necessary steps to enable connection between BIM and monitored building energy performance information. They highlight the following factors essential to providing an information environment suitable for BIM applied performance management: Skills in handling information and the interface between various environments; Technology capable of producing structured and accurate information, supporting efficient access for interconnection with other environments; and Processes that define the standards to which information is classified, stored and modified, with responsibility for its creation and modification made clear throughout the building life-cycle. A prototype method for the linking of BIM and monitored building energy performance data is demonstrated for a case-study building, encountering many of the technical barriers preventing replication on other projects. Methodological challenges are identified using review of existing building design and operation procedures. In conclusion the research found that BIM is still in its infancy, and while efforts are being made to apply it in novel ways to support efficient operation, several challenges remain. Opportunities for building energy performance improvement may be visualised using the modelling environment BIM provides, and the ability to interface with descriptive performance data suggests the future potential for BIM utilisation post-handover.
|
5 |
Construction Automation : Assessment of State of the Art and Future PossibilitiesFolkesson, Patrik, Lönnroos, Robert January 2018 (has links)
The world of automation has grown rapidly for the last four decades and it is driven by higher demands from users, technology development and maturity of technologies of industrial processes. Companies all over the world have automated their manufacturing processes which have led to billions of dollars in productivity and quality improvements. In the construction industry innovation transpires extremely slowly and a reluctance to implement new strategies and a low research and development budget also contribute to the slow innovation rate. Because of this, technical innovations such as automation solutions are uncommon in the construction industry. Methods and concepts from the manufacturing industry, such as lean principles and mass customization, have for some time tried to be implemented the construction industry to reach higher productivity. However, despite those efforts, automation solutions are not yet commonplace on the average construction site. The purpose of this thesis is to investigate existing and emerging automation solutions that could be used to automate on-site construction operations with the use of digital technologies. Empirical and theoretical studies were conducted. A literature study was conducted to gain knowledge regarding the construction industry and its digitalization and general level of automation. This was then complemented with an interview study, where Skanska AB’s Technical Specialist was one of the interviewees, in addition to being the company’s mentor for this thesis. Skanska served as an example of a representative construction company since it is one of the largest construction companies in the world. To widen the data collection, the interview study included several relevant companies where their representatives were interviewed regarding their own state of digitalization and automation. For guiding the purpose of the thesis, three research questions were formulated. The research for answering these questions led to the resulting findings regarding what is possible to automate on the construction site, what the benefits could be from implementing such solutions and what the challenges are which needs to be overcome. The results of these studies show that the construction industry is facing challenges regarding the implementation of automation solutions. Examples of this are the lack of data in general, safety concerns and project planning operations. The currently existing industrial robots, for example, are generally heavy with low lifting capacity to weight ratio which is not much of a problem in a manufacturing setting, but it makes for an imperfect fit in the construction industry, since movability and high lifting capacity is of interest for such implementations. This thesis provides knowledge of available technologies that can be used for implementing automation at the construction site as well as what benefits can be expected from successful implementations of such solutions, such as higher productivity, increased profitability and increased safety for both equipment and personnel.
|
6 |
On the integration of Building Information Modelling in undergraduate civil engineering programmes in the United KingdomBataw, Anas January 2016 (has links)
The management of data, information and knowledge through the project life cycle of buildings and civil infrastructure projects is becoming increasingly complex. In an attempt to drive efficiencies and address this complexity, the United Kingdom (UK) Government has mandated that Building Information Modelling (BIM) methods must be adopted in all public sector construction projects from 2016. Emerging from the US Department of Defence, BIM is an approach to the co-ordination of design and production data using object-oriented principles as described in ISO 29481-1:2010. The underlying philosophy of BIM is to ensure the “provision of a single environment to store shared asset data and information, accessible to all individuals who are required to produce, use and maintain it” (PAS 1192-2:2013). A key aspect of BIM lies in the notion of ‘interoperability’ between various software applications used in the design and construction process and a common data format for the efficient exchange of design information and knowledge. Protagonists of BIM argue that this interoperability provides an effective environment for collaboration between actors in the construction process and creates accurate, reliable, repeatable and high-quality information exchange. This UK Government mandate presents numerous challenges to the architecture, engineering and construction (AEC) professions; in particular, the characteristics of BIM Level 2 remain explicitly undefined and this has created a degree of uncertainty amongst the promoters and those professionals charged with delivering projects. This uncertainty is further reflected in UK higher education; contemporary undergraduate programmes in civil engineering across the UK are, on the whole, at the bottom of the BIM ‘maturity curve’. UK higher education institutions are increasingly being challenged to embrace BIM through appropriate pedagogies and teaching practices but the supporting guidance is emergent and variable. In the case of civil engineering programmes in the UK, the Joint Board of Moderators (JBM) has issued a ‘good practice guide’ as have the Higher Education Academy (HEA) under the auspices of the ‘BIM Academic Forum’. Nevertheless, a clear demand for further research to explore the technical and pedagogical issues associated with BIM integration into degree programmes remains. The research described in this thesis casts a critical lens on the current literature in the domains of object-oriented modelling of infrastructure and the associated implications for procurement and project management. A mixed-methods approach using questionnaire analysis, focus groups and secondary case study analysis was used to enact an inductive research approach that captures a range of data on pedagogic issues and considerations associated with the integration of BIM into the design of a new civil engineering curricular. The findings include recommendations for the ‘up-skilling’ of university teachers and academics, enhancing student employability and the development of suitable learning and learning techniques. A framework for the incorporation of BIM principles, concepts and technologies into civil engineering programmes is proposed. The findings of the research suggest that the first two years of study in a typical, accredited civil engineering degree programme should focus on the technical concepts relating to design from a modelling and analysis perspective. The latter years of the degree should focus on the development of ‘soft-skills’ required to enable effective teamwork and collaboration within a multidisciplinary project environment. Further studies should seek to test the proposed framework in a ‘live’ environment, particularly in the context of the necessity to balance the demands of summative and formative assessment regimes.
|
7 |
Dynamic building model integrationViljoen, Dewald 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: The amount and complexity of software applications for the building industry is increasing constantly. It has been a long term goal of the software industry to support integration of the various models and applications. This is a difficult task due to the complexity of the models and the diversity of the fields that they model. As a result, only large software houses have the ability to provide integrated solutions on the basis of a common information model. Such a model can more easily be established since the different software is developed within the same group. Other software suppliers usually have to revert to importing and exporting of data to establish some form of integration. Even large software houses still sometimes make use of this technique between their different packages. In order to obtain a fully integrated solution, clients have to acquire complex and expensive software, even if only a small percentage of the functionality of this software is actually required. A different approach to integration is proposed here, based on providing an integration framework that links different existing software models. The framework must be customisable for each individual's unique requirements as well as for the software already used by the individual. In order for the framework to be customisable, it must either encompass the information requirements of all existing software models from the outset, or be flexible and adaptable for each user. Developing an encompassing software model is difficult and expensive and thus the latter approach is followed here. The result is a model that is less general than BIM-style models, but more focussed and less complex. The elements of this flexible model do not have predetermined properties, but properties can instead be added and removed at runtime. Furthermore, derived properties are not stored as values, but rather as methods by which their values are obtained. These can also be added, removed and modified at runtime. These two concepts allow the structure and the functionality of the model to be changed at runtime. An added advantage is that a knowledgeable user can do this himself. Changes to the models can easily be incorporated in the integration framework, so their future development is not limited. This has the advantage that the information content of the various applications does not have to be pre-determined. It is acknowledged that a specific solution is required for each integration model; however the user still has full control to expand his model to the complexity of BIM-type models. Furthermore, if new software models are developed to incorporate the proposed structures, even more seamless and flexible integration will be possible. The proposed framework is demonstrated by linking a CAD application to a cost-estimation application for buildings. A prototype implementation demonstrates full integration by synchronising selection between the different applications. / AFRIKAANSE OPSOMMING: Die hoeveelheid en kompleksiteit van sagteware programme vir die bou industrie is konstant aan die vermeerder. Dit was nog altyd 'n lang termyn doelwit van die sagteware industrie om integrasie van die verskeie modelle en programme te ondersteun. Hierdie is 'n moeilike taak as gevolg van die kompleksiteit van die modelle, en die diversiteit van die velde wat hierdie programme modelleer. Die gevolg is dat net groot sagteware huise die vermoë het om geïntegreerde oplossings te bied op die basis van 'n gemeenskaplike inligting model. So 'n tipe model kan makliker bymekaargestel word siende dat al die verskillende sagteware binne dieselfde groep ontwikkel word. Ander sagteware verskaffers moet gewoonlik gebruik maak van sogenaamde uitvoer/invoer tegnieke om 'n mate van integrasie te verkry. Selfs groot sagteware huise maak ook gebruik van hierdie tegnieke tussen hulle verskeie pakkette, in plaas van om die programme direk met mekaar te koppel. Om 'n vol geïntegreerde oplossing te verkry, moet kliënte komplekse en duur sagteware aanskaf, selfs al word net 'n klein gedeelte van die funksionaliteit van hierdie sagteware gebruik. 'n Verskillende benadering word hier gevolg, gebaseer op 'n integrasie raamwerk wat verskillende bestaande sagteware modelle met mekaar koppel. Die raamwerk moet aanpasbaar wees vir elke individu se unieke opset. Vir die raamwerk om aanpasbaar te wees, moet dit óf alle bou industrie inligting inkorporeer van die staanspoor af, óf dit moet buigbaar en aanpasbaar wees vir elke gebruiker. Om 'n model te ontwikkel wat alle bestaande inligting inkorporeer van die staanspoor af is moeilik en duur, dus word die tweede benadering gevolg. Die eindresultaat is 'n model wat minder omvattend is as BIM-tipe modelle, maar eerder gefokus en minder kompleks. Die elemente van hierdie buigbare model het nie voorafbepaalde eienskappe nie, eienskappe kan bygevoeg en weggevat word terwyl die program hardloop. Verder word afgeleide eienskappe nie gestoor as waardes nie, maar eerder as metodes wat gebruik word om hulle waardes mee af te lei. Hierdie konsepte laat toe dat die struktuur en funksionaliteit van die model verander kan word terwyl die program hardloop. 'n Verdere voordeel is dat 'n kundige verbruiker die veranderinge self kan doen. Veranderinge in die modelle kan maklik ingesluit word in die integrasie model, so toekomstige ontwikkeling word nie beperk nie. Dit beteken dat die inhoud van die modelle nie vooraf bepaal hoef te word nie. Al het die raamwerk 'n gespesialiseerde oplossing vir elke gebruiker tot gevolg, het die gebruiker nogtans volle beheer om sy model uit te brei tot die omvattendheid van BIM-tipe modelle. Indien nuwe sagteware modelle ontwikkel word met die integrasie raamwerk in gedagte, kan nog gladder en buigbare integrasie moontlik wees. In hierdie tesis word 'n tekenprogram met 'n kosteberaming program gekoppel om die voorgestelde raamwerk te demonstreer. 'n Prototipe implementering demonstreer volle integrasie deur seleksie binne die programme te sinchroniseer.
|
8 |
Framework para suporte à verificação automatizada de requisitos regulamentares em projetos hospitalaresSoliman Junior, João January 2018 (has links)
Empreendimentos hospitalares são reconhecidos pela complexidade que está associada a todas as fases de seu ciclo de vida: projeto, construção e operação. Os projetos da saúde são altamente influenciados por regulamentações locais. Estes conjuntos de códigos e legislações contém informações prescritivas e são importantes ao projeto, uma vez que as especificações são, usualmente, definidas de acordo com os critérios neles contidos. Ao longo do processo de desenvolvimento de produto, as especificações devem ser verificadas frente aos requisitos extraídos destas regulamentações. Este processo, se realizado manualmente, tende a ser demorado e propenso a erros. Tentativas de desenvolvimento de sistemas de verificação automatizada não se mostraram completamente satisfatórias. Muitos dos problemas estão relacionados à forma como novas abordagens são concebidas, muitas vezes desenvolvidas de acordo com métodos codificados e fragmentados, e à tipologia de informação que está nas normas e regulamentações. A abordagem metodológica utilizada nesta pesquisa foi a Design Science Research. Como artefato, foi desenvolvido um framework com base na abordagem semântica, para fornecer suporte ao desenvolvimento de sistemas de verificação automatizada, com ênfase em requisitos regulamentares no contexto de projetos de edificações hospitalares. As principais contribuições teóricas deste estudo, portanto, estão relacionadas às taxonomias e às transformações da informação, bem como às relações entre os constructos utilizados. Os resultados indicam que a natureza das regulamentações possui impacto significativo na possibilidade de tradução em regra lógica parametrizável. Apesar de a automação ser desejável, os resultados deste estudo indicam, ainda, que atualmente nem todos os requisitos podem ser completamente traduzidos em termos de processamento e verificação automatizados. Apesar de este fato diminuir o nível geral de automatização no processo, ele pode trazer benefícios ao contexto de projetos da saúde. O atendimento de alguns dos requisitos depende em um certo grau, em critérios subjetivos, que estão relacionados à interpretação humana e à criatividade. / Healthcare facilities are recognized for the complexity associated to all phases of their lifecycle: design, construction and operation. The design of healthcare projects is highly influenced by local healthcare regulations. These legislations usually contain prescriptive information and play an important role, as design specifications should be defined based on the criteria defined therein. In the design phase, during the product development process, requirements extracted from legal regulations must be verified against design specifications. This process, if done manually, tends to be time consuming and error prone. Attempts to develop automated rule checking systems for healthcare projects have not been fully successful. Most flaws appear to be related to the way new approaches are conceived, being mostly developed according to hard-coded and fragmented approaches, and the typology of information bounded by the regulations. The methodological approach adopted in this investigation was the Design Science Research. The main outcome of this research study is a semantic-based framework, devised to support the development of automated rule checking systems, focused on regulatory requirements of healthcare building design. The main theoretical contributions of this research work are concerned with the taxonomies and information transformation, as well as the relationships among the constructs involved. The results indicate that the nature of regulations have a major impact on the possibility of translating them into logic rules. Even though automation is desirable, the findings of this study also indicate that currently not all requirements can be fully translated into rules for automated processing and checking. Although this decreases the overall degree of automation in the process, this fact may provide benefits to the healthcare context. The fulfillment of some requirements to some extend should rely on subjective criteria, which depends on human interpretation and creativity.
|
9 |
Framework para suporte à verificação automatizada de requisitos regulamentares em projetos hospitalaresSoliman Junior, João January 2018 (has links)
Empreendimentos hospitalares são reconhecidos pela complexidade que está associada a todas as fases de seu ciclo de vida: projeto, construção e operação. Os projetos da saúde são altamente influenciados por regulamentações locais. Estes conjuntos de códigos e legislações contém informações prescritivas e são importantes ao projeto, uma vez que as especificações são, usualmente, definidas de acordo com os critérios neles contidos. Ao longo do processo de desenvolvimento de produto, as especificações devem ser verificadas frente aos requisitos extraídos destas regulamentações. Este processo, se realizado manualmente, tende a ser demorado e propenso a erros. Tentativas de desenvolvimento de sistemas de verificação automatizada não se mostraram completamente satisfatórias. Muitos dos problemas estão relacionados à forma como novas abordagens são concebidas, muitas vezes desenvolvidas de acordo com métodos codificados e fragmentados, e à tipologia de informação que está nas normas e regulamentações. A abordagem metodológica utilizada nesta pesquisa foi a Design Science Research. Como artefato, foi desenvolvido um framework com base na abordagem semântica, para fornecer suporte ao desenvolvimento de sistemas de verificação automatizada, com ênfase em requisitos regulamentares no contexto de projetos de edificações hospitalares. As principais contribuições teóricas deste estudo, portanto, estão relacionadas às taxonomias e às transformações da informação, bem como às relações entre os constructos utilizados. Os resultados indicam que a natureza das regulamentações possui impacto significativo na possibilidade de tradução em regra lógica parametrizável. Apesar de a automação ser desejável, os resultados deste estudo indicam, ainda, que atualmente nem todos os requisitos podem ser completamente traduzidos em termos de processamento e verificação automatizados. Apesar de este fato diminuir o nível geral de automatização no processo, ele pode trazer benefícios ao contexto de projetos da saúde. O atendimento de alguns dos requisitos depende em um certo grau, em critérios subjetivos, que estão relacionados à interpretação humana e à criatividade. / Healthcare facilities are recognized for the complexity associated to all phases of their lifecycle: design, construction and operation. The design of healthcare projects is highly influenced by local healthcare regulations. These legislations usually contain prescriptive information and play an important role, as design specifications should be defined based on the criteria defined therein. In the design phase, during the product development process, requirements extracted from legal regulations must be verified against design specifications. This process, if done manually, tends to be time consuming and error prone. Attempts to develop automated rule checking systems for healthcare projects have not been fully successful. Most flaws appear to be related to the way new approaches are conceived, being mostly developed according to hard-coded and fragmented approaches, and the typology of information bounded by the regulations. The methodological approach adopted in this investigation was the Design Science Research. The main outcome of this research study is a semantic-based framework, devised to support the development of automated rule checking systems, focused on regulatory requirements of healthcare building design. The main theoretical contributions of this research work are concerned with the taxonomies and information transformation, as well as the relationships among the constructs involved. The results indicate that the nature of regulations have a major impact on the possibility of translating them into logic rules. Even though automation is desirable, the findings of this study also indicate that currently not all requirements can be fully translated into rules for automated processing and checking. Although this decreases the overall degree of automation in the process, this fact may provide benefits to the healthcare context. The fulfillment of some requirements to some extend should rely on subjective criteria, which depends on human interpretation and creativity.
|
10 |
Framework para suporte à verificação automatizada de requisitos regulamentares em projetos hospitalaresSoliman Junior, João January 2018 (has links)
Empreendimentos hospitalares são reconhecidos pela complexidade que está associada a todas as fases de seu ciclo de vida: projeto, construção e operação. Os projetos da saúde são altamente influenciados por regulamentações locais. Estes conjuntos de códigos e legislações contém informações prescritivas e são importantes ao projeto, uma vez que as especificações são, usualmente, definidas de acordo com os critérios neles contidos. Ao longo do processo de desenvolvimento de produto, as especificações devem ser verificadas frente aos requisitos extraídos destas regulamentações. Este processo, se realizado manualmente, tende a ser demorado e propenso a erros. Tentativas de desenvolvimento de sistemas de verificação automatizada não se mostraram completamente satisfatórias. Muitos dos problemas estão relacionados à forma como novas abordagens são concebidas, muitas vezes desenvolvidas de acordo com métodos codificados e fragmentados, e à tipologia de informação que está nas normas e regulamentações. A abordagem metodológica utilizada nesta pesquisa foi a Design Science Research. Como artefato, foi desenvolvido um framework com base na abordagem semântica, para fornecer suporte ao desenvolvimento de sistemas de verificação automatizada, com ênfase em requisitos regulamentares no contexto de projetos de edificações hospitalares. As principais contribuições teóricas deste estudo, portanto, estão relacionadas às taxonomias e às transformações da informação, bem como às relações entre os constructos utilizados. Os resultados indicam que a natureza das regulamentações possui impacto significativo na possibilidade de tradução em regra lógica parametrizável. Apesar de a automação ser desejável, os resultados deste estudo indicam, ainda, que atualmente nem todos os requisitos podem ser completamente traduzidos em termos de processamento e verificação automatizados. Apesar de este fato diminuir o nível geral de automatização no processo, ele pode trazer benefícios ao contexto de projetos da saúde. O atendimento de alguns dos requisitos depende em um certo grau, em critérios subjetivos, que estão relacionados à interpretação humana e à criatividade. / Healthcare facilities are recognized for the complexity associated to all phases of their lifecycle: design, construction and operation. The design of healthcare projects is highly influenced by local healthcare regulations. These legislations usually contain prescriptive information and play an important role, as design specifications should be defined based on the criteria defined therein. In the design phase, during the product development process, requirements extracted from legal regulations must be verified against design specifications. This process, if done manually, tends to be time consuming and error prone. Attempts to develop automated rule checking systems for healthcare projects have not been fully successful. Most flaws appear to be related to the way new approaches are conceived, being mostly developed according to hard-coded and fragmented approaches, and the typology of information bounded by the regulations. The methodological approach adopted in this investigation was the Design Science Research. The main outcome of this research study is a semantic-based framework, devised to support the development of automated rule checking systems, focused on regulatory requirements of healthcare building design. The main theoretical contributions of this research work are concerned with the taxonomies and information transformation, as well as the relationships among the constructs involved. The results indicate that the nature of regulations have a major impact on the possibility of translating them into logic rules. Even though automation is desirable, the findings of this study also indicate that currently not all requirements can be fully translated into rules for automated processing and checking. Although this decreases the overall degree of automation in the process, this fact may provide benefits to the healthcare context. The fulfillment of some requirements to some extend should rely on subjective criteria, which depends on human interpretation and creativity.
|
Page generated in 0.6139 seconds