• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Composition and structure of fescue prairie respond to burning and environmental conditions more than to grazing or burning and grazing in the short-term

Mori, Nadia 13 April 2009
Burning and grazing are key processes in the natural disturbance regime of the Fescue Prairie. Burning, grazing and their interacting effects on plant species diversity (H¡¯), species richness, and heterogeneity in species composition were studied at two spatial scales for two years in a remnant Fescue Prairie near Saskatoon, Saskatchewan. Cattle distribution in relation to plant communities was also studied. At the plot scale (100 m2), burning increased H¡¯ (P<0.01) (x=1.75) compared to unburned treatments (x=1.54) (S.E.¡À0.058). Burning, grazing, and burning + grazing had no significant effect (P>0.10) on species richness; richness varied between years (P=0.04), averaging 14.2 species m-2 in year one versus 15.8 species m-2 in year two (S.E.¡À 0.65). Spatial heterogeneity (P>0.25; x=46%; S.E.¡À3.0) and temporal heterogeneity in species composition (P>0.21; x=42%; S.E.¡À3.8) were not affected by burning, grazing, or their interaction. Burning + grazing increased tiller densities in <i>Elymus lanceolatus</i> (68%) and those of <i>Festuca hallii</i> (11%) (P<0.001) compared to the control. Burning decreased total aboveground net primary production (ANPP) (P<0.001) (x=305 g m-2) compared to unburned treatments (x=500 g m-2; S.E.¡À30.8). Grazing and burning + grazing had no effect on total ANPP or graminoid ANPP (P¡Ý0.36). At the scale of Kernen Prairie (130 ha), H¡¯ increased between 1996 (P<0.05) (x=1.10) and 2005 (x=1.40; S.E.¡À0.094). Species richness increased from 5.2 species 0.25 m-2 in 1996, to 6.8 species 0.25 m-2 in 2005 (S.E.¡À0.505). Heterogeneity in plant species composition tended to increase after prescribed burning was started in 1986 and after grazing began in 2006. Cattle preferred <i>Bromus inermis-</i> and <i>Poa pratensis-</i>dominated plant communities, areas with intermediate amounts of total aboveground standing crop of plants, and areas in which shrub densities exceeded 16 stems 0.25 m-2. In the short term, burning and environmental conditions had greater effects on species diversity, richness, and heterogeneity in species composition than grazing or the interaction of burning and grazing. Different responses may be expected with different combinations of timing, frequency, and intensity of burning and grazing at different sites under ever changing environmental conditions.
2

Composition and structure of fescue prairie respond to burning and environmental conditions more than to grazing or burning and grazing in the short-term

Mori, Nadia 13 April 2009 (has links)
Burning and grazing are key processes in the natural disturbance regime of the Fescue Prairie. Burning, grazing and their interacting effects on plant species diversity (H¡¯), species richness, and heterogeneity in species composition were studied at two spatial scales for two years in a remnant Fescue Prairie near Saskatoon, Saskatchewan. Cattle distribution in relation to plant communities was also studied. At the plot scale (100 m2), burning increased H¡¯ (P<0.01) (x=1.75) compared to unburned treatments (x=1.54) (S.E.¡À0.058). Burning, grazing, and burning + grazing had no significant effect (P>0.10) on species richness; richness varied between years (P=0.04), averaging 14.2 species m-2 in year one versus 15.8 species m-2 in year two (S.E.¡À 0.65). Spatial heterogeneity (P>0.25; x=46%; S.E.¡À3.0) and temporal heterogeneity in species composition (P>0.21; x=42%; S.E.¡À3.8) were not affected by burning, grazing, or their interaction. Burning + grazing increased tiller densities in <i>Elymus lanceolatus</i> (68%) and those of <i>Festuca hallii</i> (11%) (P<0.001) compared to the control. Burning decreased total aboveground net primary production (ANPP) (P<0.001) (x=305 g m-2) compared to unburned treatments (x=500 g m-2; S.E.¡À30.8). Grazing and burning + grazing had no effect on total ANPP or graminoid ANPP (P¡Ý0.36). At the scale of Kernen Prairie (130 ha), H¡¯ increased between 1996 (P<0.05) (x=1.10) and 2005 (x=1.40; S.E.¡À0.094). Species richness increased from 5.2 species 0.25 m-2 in 1996, to 6.8 species 0.25 m-2 in 2005 (S.E.¡À0.505). Heterogeneity in plant species composition tended to increase after prescribed burning was started in 1986 and after grazing began in 2006. Cattle preferred <i>Bromus inermis-</i> and <i>Poa pratensis-</i>dominated plant communities, areas with intermediate amounts of total aboveground standing crop of plants, and areas in which shrub densities exceeded 16 stems 0.25 m-2. In the short term, burning and environmental conditions had greater effects on species diversity, richness, and heterogeneity in species composition than grazing or the interaction of burning and grazing. Different responses may be expected with different combinations of timing, frequency, and intensity of burning and grazing at different sites under ever changing environmental conditions.

Page generated in 0.0809 seconds