• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deficiences of practical eskom currently uses for setting out-of-step relays

De Villiers, Louw Nicolaas Francois 26 October 2006 (has links)
Faculty of Engineering and the Built Environment; School of Electrical and Information Engineering; MSC Dissertation / In the recent past the Eskom network operated out-of-step at three occasions. Eskom questions whether the out-of-step relays responded as they should have. This is based on the fact that not all the out-of-step relays operated during these events. This dissertation shows that shunts can make the impedance locus behave nonclassically to the extent that the present practices Eskom uses for out-of-step relaying become inappropriate for application at certain busbars of the network. This is illustrated by showing that when the characteristic of the relay at Hydra, situated on the Mpumalanga side of Hydra, is set using the classical approach, the mentioned relay will not detect swings that have their electrical centre south of Hydra. A modified two generator model is used to show the effect shunts have. The phrase “improved two generator model” refers to this model. The improved two generator model is derived to represent the section of the Eskom network that links Mpumalanga to the Western Cape.
2

Projekt logické ochrany přípojnic / Project of Logical Busbar Protection

Kulač, Ivan January 2013 (has links)
The main objective of master‘s thesis was creation logical overcurrent busbar protection. The first part of document describes teaching test panels with ABB REF feeder protection´s terminals. These panels are installed in Laboratory of electrical protections at Department of electrical power engineering, Faculty of electrical engineering and communication, Brno University of technology. On these panels we can simulate the real involvement of the distribution station. Were subsequently describes used digital protection´s terminals REF 543. Then was designed configuration of these panels so to achieve logical busbar protection, which will be able to assess the short circuit fault and shut the smallest part of the busbar system. Within the configuration it was necessary to solve the cooperation of protection terminals. This was finally accomplished through connecting wires between each test panel. After the configuration it was necessary make the tests. We used secondary protection tester CMC 256plus. After the tests was analysis fault´s records and has been verified the accuracy of the proposed logical busbar protection.
3

Langzeitverhalten stromführender Schraubenverbindungen mit Stromschienen kleiner Dicke bei wechselnden Umgebungsbedingungen

Djuimeni Poudeu, Franck Stephane 06 January 2023 (has links)
Stromführende Schraubenverbindungen werden als Verbindung zwischen Leitern in elektrischen Komponenten im Automotiv-Bereich sowie im Bereich der Elektroenergietechnik aufgrund der Austauschbarkeit und der Reparaturmöglichkeit bevorzugt eingesetzt. Dabei werden diese Verbindungen insbesondere im Automotiv-Bereich permanent mit statischen bzw. wechselnden Umweltbelastungen beaufschlagt. Abhängig von der geometrischen Gestalt der Komponente, der elektrischen sowie der elektrothermischen und der mechanischen Anforderungen an diese kommen verschiedene Leiterquerschnitte sowie Verbindungsgeometrien zum Einsatz. Die Leiter, die in elektrischen Fahrzeugen eingesetzt werden, haben meistens eine Dicke im Bereich (1…5) mm, da die zu übertragenden Ströme im Vergleich zu den Anwendungen in der Elektroenergietechnik kleiner sind. Insbesondere bei diesen niedrigeren Dicken der Leiter können wechselnde Umweltbelastungen zu einer beschleunigten Alterung der stromführenden Schraubenverbindungen und damit zu einer unzulässigen Erhöhung des Verbindungswiderstands führen. Für die Auslegung von langzeitstabilen stromführenden Schraubenverbindungen müssen daher die Konstruktions- und Montageparameter sowie die Leiter- und Beschichtungswerkstoffe abhängig von den erwarteten Umweltbelastungen aufeinander abgestimmt werden. In dieser Arbeit wurde basierend auf dem Ersatzquerschnitt das Kontaktverhalten stromführender Schraubenverbindungen abhängig von der Leiter- und Schraubengeometrie, vom Bohrloch sowie vom Leiter- und Beschichtungswerkstoff untersucht. Die Ergebnisse wurden mit den Ergebnissen aus früheren Arbeiten für Schraubenverbindungen mit deutlich größeren Dicke des Leiters verglichen und daraus allgemeingültige Mindestflächen-pressungen für ein gutes Kontaktverhalten hergeleitet. Dabei wurden Leiter aus Cu-ETP, AlMgSi und AlMgSi0,5 T7 und die Beschichtungswerkstoffe Zinn, Silber und Nickel-Phosphor betrachtet. Unterkopfreibwerte und Setzbeträge wurden abhängig vom Leiter- und Beschichtungswerkstoff, der Schraubenunterkopfform, der Drehzahl und dem Anzugsverfahren bestimmt und mit den Werten aus dem VDI 2230-1 verglichen. Zusätzlich wurde der Einfluss der Temperatur auf das Setzen in Schraubenverbindungen untersucht. Der Einfluss der Temperatur auf das Werkstoffverhalten von Cu-ETP R240, Cu-OFE R240, Cu-HCP R240, CuFe0,1P und CuFe2P sowie Al99,5 O, Al99,5 H14, AlMgSi und AlMgSi0,5 T7 wurde mittels der Grenzflächenpressung und der Härte bewertet. Für ausgewählte Schraubenverbindungen mit Leitern aus Aluminium- bzw. Kupferleiterwerkstoffen wurde der Einfluss der Temperatur (bis 180 °C) auf das Vorspannkraft- und Langzeitverhalten untersucht. Damit wurden die Grenztemperaturen für diese Leiterwerkstoffe bestimmt. Abhängig von der Montagevorspannkraft sowie der Leiter- und Schraubengeometrie wurde der Einfluss des Temperaturschocks und von Vibrationen auf das Langzeitverhalten stromführender Schraubenverbindungen untersucht. Darauf aufbauend wurden die oberflächenspezifischen Mindestflächenpressungen für ein gutes Langzeitverhalten hergeleitet. Bei einigen Werkstoffpaarungen wurde die Eignung auf Wiederholmontage untersucht. Die gewonnenen Erkenntnisse bilden Anhaltspunkte für die konstruktive Auslegung, die Montage und das Prüfen von langzeitstabilen stromführenden Schraubenverbindungen, insbesondere im Automotiven-Bereich.:1 Einleitung 2 Stand der Erkenntnisse 2.1 Kontakttheorie bei Schraubenverbindungen 2.2 Ersatzquerschnitt und Mindestflächenpressung 2.3 Kontaktoberfläche und Beschichtungswerkstoffe 2.4 Thermomechanisches Verhalten der Leiterwerkstoffe 2.4.1 Grenzflächenpressung 2.4.2 Entfestigen und Kriechen von Aluminium- und Kupferleiterwerkstoffen 2.5 Grundlagen der Schraubenmontage 2.6 Alterung Stromführender Schraubenverbindungen 2.7 Vorspannkraftabbau bei Schraubenverbindungen bei statischen und wechselnden Belastungen 3 Aufgabenstellung 4 Kontaktverhalten von Schraubenverbindungen mit kleinen Leiterquerschnitten 4.1 Geometrische Parameter der Verbindungen und Werkstoffe 4.2 Bestimmen des temperaturäquivalenten Gütefaktors 4.3 Analytische, numerische und experimentelle Modelle zur Bestimmung der mechanisch tragenden Kontaktfläche 4.3.1 Modellbildung und Versuchsdurchführung 4.3.2 Einfluss der Klemmlänge und der Schraubengröße auf den Ersatzquerschnitt und auf die maximale mechanische Spannung 4.3.3 Einfluss der Schraubenunterkopfauflage und des Bohrlochs auf die mechanische Spannung 4.4 Experimentelles Ermitteln der Mindestflächenpressung für verschiedene Werkstoffpaarungen 4.4.1 Versuchsplan, Versuchsaufbau und Auswertungsmethodik 4.4.2 Vergleichbarkeit der Untersuchungsergebnisse verschiedener Messmethoden 4.4.3 Einfluss des Beschichtungs- und Leiterwerkstoffes auf das Kontaktverhalten 4.4.4 Einfluss der Verbindungsgeometrie 4.5 Übertragbarkeit der Parameter auf große Dicke des Leiters 4.6 Montage-Parameter 4.6.1 Reibwertuntersuchung verschiedener Leiter- und Beschichtungswerkstoffe 4.6.2 Einfluss der Reibung auf die Montagevorspannkraft 4.6.3 Ermitteln des zeitunabhängigen Setzverhaltens beschichteter Aluminium- und Kupferleiter 4.6.4 Einfluss der Temperatur auf das Setzverhalten beschichteter Leiter 5 Langzeitverhalten von Schraubenverbindungen unter thermischer Dauer- und Wechselbelastung sowie unter Schwingungsbelastung 5.1 Temperatur- und zeitabhängiges Verhalten der Leiterwerkstoff-Kennwerte 5.1.1 Versuchsaufbau und Auswertungsmethodik zum Bestimmen der Grenzflächenpressung 5.1.2 Versuchsergebnisse 5.2 Temperatur- und zeitabhängiges Vorspannkraftverhalten 5.2.1 Versuchsaufbauten und Beschreiben der Messprinzipien 5.2.2 Versuchsergebnisse zum Einfluss der Temperatur und der Montagevorspannkraft auf das Vorspannkraftverhalten und den Verbindungswiderstand 5.2.3 Abschätzen der Restvorspannkraft während der Belastungsdauer im Fahrzeug 5.3 Elektrisches Langzeitverhalten von Schraubenverbindungen unter thermischer Dauer- und Wechsellast 5.3.1 Einfluss der additiven Belastung und der Belastungsreihenfolge auf das Langzeitverhalten stromführender Schraubenverbindungen 5.3.2 Einfluss des Schraubenunterkopfs und des Bohrlochs auf das Langzeitverhalten stromführender Schraubenverbindungen 5.3.3 Langzeitverhalten stromführender Schraubenverbindungen abhängig von der Auslagerungstemperatur 5.4 Elektrisches Langzeitverhalten von Schraubenverbindungen unter Schwingungsbelastung 5.4.1 Versuchsaufbau und –durchführung 5.4.2 Einfluss der Anregungsart und der Belastungsrichtung auf das Langzeitverhalten von Schraubenverbindungen mit nicht beschichteten Leitern 5.4.3 Einfluss der Vibration auf das Langzeitverhalten von Schraubenverbindungen mit beschichteten Leitern 5.5 Kontakt- und Langzeitverhalten bei Wiederholmontage 6 Zusammenfassung 7 Ausblick 8 Literatur 9 Abbildungsverzeichnis 10 Tabellenverzeichnis 11 Anhang / Electrical bolted joints are preferred for connecting conductors and electrical components in the automotive sector as well as in the field of electrical energy technology due to their interchangeability and the possibility of repair. In the automotive sector in particular, these joints are permanently exposed to static or changing environmental loads. Different conductor cross-sections and connection geometries are used depending on the geometric shape of the component, the electrical as well as the electrothermal and mechanical requirements. The conductors that are used in electric vehicles usually have a thickness in the range (1…5) mm, since the currents to be transmitted are smaller in comparison to the applications in electrical power engineering. Particularly with these lower thicknesses, changing environmental loads can lead to accelerated aging of the Electrical bolted joints and thus to an impermissible increase in the connection resistance. For the design of long-term stable Electrical bolted joints, the construction and assembly parameters as well as the conductor and coating materials must therefore be coordinated with one another depending on the expected environmental loads. In this work, based on the equivalent cross-section, the contact behavior of electrical bolted joints depending on the conductor and screw geometry, the hole diameter and the conductor and coating material was investigated. The results were compared with the results from earlier work for bolted joints with a significantly larger conductor thickness and generally applicable minimum surface pressures for good contact behavior were derived from them. Conductors made of Cu-ETP, AlMgSi and AlMgSi0.5 T7 and with the coating materials tin, silver and nickel-phosphorus were examined. Under-head friction values and settling amounts were determined depending on the conductor and coating material, the screw under-head shape, the speed and the tightening method and compared with the values in VDI 2230-1. In addition, the influence of temperature on the setting in bolted joints was investigated. The influence of temperature on the material behavior of Cu-ETP R240, Cu-OFE R240, Cu HCP R240, CuFe0.1P and CuFe2P as well as Al99.5 O, Al99.5 H14, AlMgSi and AlMgSi0.5 T7 was determined by means of the compressive yield point and rated by hardness. For selected bolted joints with aluminum or copper conductor materials, the influence of temperature (up to 180 °C) on the preload force and long-term behavior was investigated. The limit temperatures of these conductor materials were thus determined. The influence of temperature shock and vibration on the long-term behavior of electrical bolted joints was investigated depending on the assembly preload, the conductor and screw geometry. Based on this, the conductor surface-specific minimum surface pressures for good long-term behavior were derived. With some contact pairings, the suitability for repeat assembly was examined. The knowledge gained forms reference points for the structural design, assembly and testing of long-term stable electrical bolted joints, especially in the automotive sector.:1 Einleitung 2 Stand der Erkenntnisse 2.1 Kontakttheorie bei Schraubenverbindungen 2.2 Ersatzquerschnitt und Mindestflächenpressung 2.3 Kontaktoberfläche und Beschichtungswerkstoffe 2.4 Thermomechanisches Verhalten der Leiterwerkstoffe 2.4.1 Grenzflächenpressung 2.4.2 Entfestigen und Kriechen von Aluminium- und Kupferleiterwerkstoffen 2.5 Grundlagen der Schraubenmontage 2.6 Alterung Stromführender Schraubenverbindungen 2.7 Vorspannkraftabbau bei Schraubenverbindungen bei statischen und wechselnden Belastungen 3 Aufgabenstellung 4 Kontaktverhalten von Schraubenverbindungen mit kleinen Leiterquerschnitten 4.1 Geometrische Parameter der Verbindungen und Werkstoffe 4.2 Bestimmen des temperaturäquivalenten Gütefaktors 4.3 Analytische, numerische und experimentelle Modelle zur Bestimmung der mechanisch tragenden Kontaktfläche 4.3.1 Modellbildung und Versuchsdurchführung 4.3.2 Einfluss der Klemmlänge und der Schraubengröße auf den Ersatzquerschnitt und auf die maximale mechanische Spannung 4.3.3 Einfluss der Schraubenunterkopfauflage und des Bohrlochs auf die mechanische Spannung 4.4 Experimentelles Ermitteln der Mindestflächenpressung für verschiedene Werkstoffpaarungen 4.4.1 Versuchsplan, Versuchsaufbau und Auswertungsmethodik 4.4.2 Vergleichbarkeit der Untersuchungsergebnisse verschiedener Messmethoden 4.4.3 Einfluss des Beschichtungs- und Leiterwerkstoffes auf das Kontaktverhalten 4.4.4 Einfluss der Verbindungsgeometrie 4.5 Übertragbarkeit der Parameter auf große Dicke des Leiters 4.6 Montage-Parameter 4.6.1 Reibwertuntersuchung verschiedener Leiter- und Beschichtungswerkstoffe 4.6.2 Einfluss der Reibung auf die Montagevorspannkraft 4.6.3 Ermitteln des zeitunabhängigen Setzverhaltens beschichteter Aluminium- und Kupferleiter 4.6.4 Einfluss der Temperatur auf das Setzverhalten beschichteter Leiter 5 Langzeitverhalten von Schraubenverbindungen unter thermischer Dauer- und Wechselbelastung sowie unter Schwingungsbelastung 5.1 Temperatur- und zeitabhängiges Verhalten der Leiterwerkstoff-Kennwerte 5.1.1 Versuchsaufbau und Auswertungsmethodik zum Bestimmen der Grenzflächenpressung 5.1.2 Versuchsergebnisse 5.2 Temperatur- und zeitabhängiges Vorspannkraftverhalten 5.2.1 Versuchsaufbauten und Beschreiben der Messprinzipien 5.2.2 Versuchsergebnisse zum Einfluss der Temperatur und der Montagevorspannkraft auf das Vorspannkraftverhalten und den Verbindungswiderstand 5.2.3 Abschätzen der Restvorspannkraft während der Belastungsdauer im Fahrzeug 5.3 Elektrisches Langzeitverhalten von Schraubenverbindungen unter thermischer Dauer- und Wechsellast 5.3.1 Einfluss der additiven Belastung und der Belastungsreihenfolge auf das Langzeitverhalten stromführender Schraubenverbindungen 5.3.2 Einfluss des Schraubenunterkopfs und des Bohrlochs auf das Langzeitverhalten stromführender Schraubenverbindungen 5.3.3 Langzeitverhalten stromführender Schraubenverbindungen abhängig von der Auslagerungstemperatur 5.4 Elektrisches Langzeitverhalten von Schraubenverbindungen unter Schwingungsbelastung 5.4.1 Versuchsaufbau und –durchführung 5.4.2 Einfluss der Anregungsart und der Belastungsrichtung auf das Langzeitverhalten von Schraubenverbindungen mit nicht beschichteten Leitern 5.4.3 Einfluss der Vibration auf das Langzeitverhalten von Schraubenverbindungen mit beschichteten Leitern 5.5 Kontakt- und Langzeitverhalten bei Wiederholmontage 6 Zusammenfassung 7 Ausblick 8 Literatur 9 Abbildungsverzeichnis 10 Tabellenverzeichnis 11 Anhang
4

Výpočet tepelného pole rozvaděče UniGear 500R / Calculation of heat and force field UniGear ZS1

Mokrý, Lukáš January 2015 (has links)
The aim of my work is to describe high-voltage switchgear type UniGear 500R, which is part of UniGear switchgears family. I will focus on heating issue of one 500R unit and its parts during operation. Maximum values of this heating is limited by standards and can´t be exceed to ensure safe and reliable operation. That is why the heating tests are necessary part of designing and developing switchgears. Calculation will be made by two different ways. First is classic one-pole heating net method and second is numerical simulation in Solidworks flow simulation program. Except the theoretical description there will be presented also used 3D model and explanation of both method, used to calculation and simulation. Last point of this work is measuring of this type of switchgear and getting real data. The main point there is to compare measured values with values calculated and decide if is possible to simulate tests with appropriate accuracy. Then would be also possible to substitute the real test in laboratory, which costs many thousand crowns and takes lots hours of time. This work is collaborated with EJF division of ABB Company, where I am employed. Heating issues in this company is always on process, because of developing and improving of their products. So this work could be helpful in this field. ABB provides all materials needed, especially technical catalogues, 3D model and final values from laboratory measuring. Support from college faculty is mainly in study consultations and proposing of calculations making. In the end of work will be make final comparison and evaluation of achieved results.
5

Beitrag zur thermischen Dimensionierung von Niederspannungs-Schaltgerätekombinationen

Adam, Robert 03 December 2019 (has links)
In der Niederspannungstechnik werden die Anlagen zum Übertragen und Verteilen von Elektroenergie als Niederspannungs-Schaltgerätekombinationen bezeichnet. Die Anlagen sollen ihre Aufgaben möglichst wartungsfrei über einen Zeitraum von mehreren Jahrzehnten erfüllen. Damit ein langzeitstabiler Betrieb der Niederspannungs-Schaltgerätekombinationen möglich ist, müssen die Anlagen mindestens normgerecht thermisch dimensioniert sein. Um die Erwärmung von Niederspannungs-Schaltgerätekombinationen zuverlässig und effizient zu berechnen, wird in dieser Arbeit die Wärmenetzmethode genutzt. In der Wärmenetzmethode werden die Vorgänge der Erwärmung mit Hilfe von Wärmestromquellen, Temperaturquellen, Wärmewiderständen und Wärmekapazitäten nachgebildet. Einen wesentlichen Einfluss auf die Erwärmung einer Schaltgerätekombination haben die in den Wärmequellen der Anlage erzeugten Verlustleistungen. Die dominanten Wärmequellen (Hauptwärmequellen) innerhalb von Niederspannungs-Schaltgerätekombinationen werden in dieser Arbeit untersucht und die Ergebnisse in die Wärmenetzmethode integriert. Mit den Ergebnissen werdenmit Hilfe der Wärmenetzmethode die Erwärmungen verschiedener Betriebsmittel einer Niederspannungs-Schaltgerätekombination berechnet und anhand von Experimenten verifiziert. Die Wärmenetze der einzelnen Betriebsmittel werden zum Gesamt-Wärmenetz einer Niederspannungs-Schaltgerätekombination zusammengeschaltet. Die mit diesem Wärmenetz berechneten Temperaturen werden dann durch Experimente an der Versuchsanlage einer Niederspannungs-Schaltgerätekombination verifiziert. Eine der Hauptwärmequellen in Niederspannungs-Schaltgerätekombinationen sind die ohmschen Leitungsverluste in den Strombahnen der Hauptsammel- und Feldverteilerschienen. Bei Drehstrombelastung werden die hier in den einzelnen Teilleitern erzeugten Verlustleistungen durch die Stromverdrängung aufgrund des Skin- und den überlagerten Proximity-Effekts maßgeblich beeinflusst. Gegenüber einer Gleichstrombelastung unterscheiden sich die Verlustleistungen jedes einzelnen Teilleiters um den Leistungsfaktor k3~. Für Drehstromschienensysteme mit mehreren Teilleitern existieren bisher nur unzureichende Angaben zum Leistungsfaktor k3~ durch den Skin- und den Proximity-Effekt. In dieser Arbeit wurden FEM-Modelle aufgebaut, die Leistungsfaktoren k3~ für unterschiedliche Schienenanordnungen berechnet und anhand experimenteller Untersuchungen verifiziert. Weitere Hauptwärmequellen in Niederspannungs-Schaltgerätekombinationen sind die in den Anlagen eingebauten Betriebsmittel zum Schalten, Trennen und Schützen (z. B. Leistungsschalter, Trennschalter, Trenneinrichtungen, Sicherungen). Neben den Schaltkontakten selbst gehören die thermischen Schutzauslöser und Sicherungen zu den Hauptwärmequellen in den Strombahnen der Schaltgeräte. Um die Erwärmung der Geräte genau zu berechnen, müssen der Aufbau der Strombahnen und die Verteilung der Widerstände bekannt sein. Diese Widerstände können im Allgemeinen nur gemessen werden. Dabei hat sich zum einen gezeigt, dass die gemessenen Widerstände der Schaltkontakte von Kompaktleistungsschaltern auch im selben Gerät stark variieren können. Zum anderen sind die Widerstände der Schaltkontakte so dominant, dass in ihnen bis zu 47 % der gesamten Verlustleistungen eines Kompaktleistungsschalters entstehen können. Bedingt durch die zunehmende kompakte Bauweise der Anlagen erzeugen die Drehstromfelder der Sammelschienen hohe magnetische Feldstärken in umgebenden Metallteilen. In den Gehäusen, Einbauplatten, Wänden, Umhüllungen und Verkleidungen in Niederspannungs-Schaltgerätekombinationen können daher hohe Verlustleistungen entstehen, die maßgeblich die Erwärmung der Anlagen beeinflussen. Rechnerische und experimentelle Untersuchungen haben gezeigt, dass bei typischen Anordnungen von Schienen und Umhüllungen Verlustleistungen entstehen, die bis zu 32,7% der gesamten in der Versuchsanordnung gemessenen Verlustleistungen betragen. Sind die Ergebnisse der untersuchten Wärmequellen in die Wärmenetze der verschiedenen Betriebsmittel von Niederspannungs-Schaltgerätekombinationen integriert, ermöglichen die aufgebauten Wärmenetze die Berechnung von Temperaturen mit geringen Abweichungen (+4,4 K, -3,5 K) verglichen mit gemessenen Temperaturen. Mit den verifizierten und modularisierten Wärmenetzen der Betriebsmittel ist eine Möglichkeit geschaffen, Wärmenetze von Niederspannungs-Schaltgerätekombinationen effizient und wirtschaftlich aufzubauen.:1 Einleitung 1 2 Problemstellung 2 2.1 Stand der Technik / Ausgangssituation 2 2.2 Normen zur Erwärmung 3 2.3 Aufgabenstellung 5 2.4 Aufbau der Versuchsanlage 7 3 Grundlagen der Erwärmungsberechnung 11 3.1 Erzeugte Wärmeleistungen 11 3.2 Wärmeübertragung 17 3.3 Erwärmungsberechnung mit Wärmenetzen 39 4 Grundlagen zur Stromverdrängung 43 4.1 Stromdichteverteilung im Vollzylinder 43 4.2 Stromverdrängung und der Leistungsfaktor k 48 5 Untersuchungen zu den Wärmequellen 54 5.1 Stromwärmeverluste in den elektrischen Leiter von Sammel- und Feldverteilerschienen 57 5.2 Stromwärmeverluste in Schaltgeräten und zugehörigen Betriebsmitteln 90 5.3 Wirbelstrom- und Hystereseverluste in Metallteilen 105 6 Wärmenetze für die Betriebsmittel einer Niederspannungs- Schaltgerätekombination 126 7 Wärmenetz einer Niederspannungs-Schaltgerätekombination 148 8 Zusammenfassung und Ausblick 155 9 Literaturverzeichnis 158 10 Anhang 163 / In low-voltage engineering the systems for transmission and distribution of electric energy are named as low-voltage switchgear and controlgear assemblies. The systems have to perform their functions maintenance free as much as possible for a period of some decades. To achieve a long-time stable operation, the systems have to be designed thermally at least according to standards. In this thesis the thermal network method is used to calculate the heating of low-voltage switchgear and controlgear assemblies reliably and efficiently. The thermal network method simulates the processes of heating by heat sources, temperature sources thermal resistors and thermal capacities. The thermal power losses which are produced in the heat sources of the systems have significant influence on the heating of switchgear and controlgear assemblies. The dominant heat sources (main heat sources) within low-voltage switchgear and controlgear assemblies are researched at this thesis and the results are integrated to the thermal network method. The results are used to calculate the heating of various electrical components of a low-voltage switchgear and controlgear assembly using the thermal network method and verified by means of experiments. The thermal networks of the individual components are interconnected to form the overall thermal network of a low-voltage switchgear and controlgear assembly. The temperatures computed with this thermal network are then verified by experiments at the test setup of a low-voltage switchgear and controlgear assembly. In low-voltage switchgear and controlgear assemblies one of the main heat sources are the ohmic losses in the current paths of the main busbars and the distribution busbars. If the busbars are loaded with a three-phase current, the generated power losses of every individual subconductors are significantly influenced by the current displacement due to the skin effect and the superposed proximity effect. The power losses of each individual subconductor differ by the power factor k3~ compared to a DC load. For three-phase busbar systems with several subconductors there is only insufficient information on the power factor k3~ which takes into account the current displacement by the skin effect and the proximity effect. In this thesis, FEM models were developed to calculate the power factor k3~ for different busbar systems. The results were verified by experimental investigations. The installed electrical devices for switching, isolating and protection (e. g. circuit breakers, disconnectors, devices for disconnecting and fuses) are further main heat sources in low-voltage switchgear and controlgear assemblies. In addition to the main switching contacts themselves, thermal protection trips and the fuses are the main heat sources in the current paths of the switching devices. In order to calculate the heating of the electrical devices properly, the structure of the current paths and the distribution of the electrical resistances have to be known. In general these resistances can only determine by measuring. On one hand, it was found that the measured resistances vary widely even inside the same device. On the other hand, the resistances of the switching contacts are dominating, that up to 47 % of the entire power losses of a molded case circuit breaker can be generated there. Conditioned by the more and more compact design of the switchgears, the three-phase fields of the main busbars causes high magnetic fields at the surrounding metallic components. High power losses can therefore occur in housings, panels, walls, casings and enclosures in low-voltage switchgear and controlgear assemblies, which have a significant influence on the heating of the systems. Computational and experimental investigations have shown that typical arrangements of busbars and enclosures result in power losses of up to 32.7% of the total power losses measured in the test setup. If the results of the investigated heat sources are integrated into the networks of the various equipment of low-voltage switchgear and controlgear assemblies, the thermal networks set up enable the calculation of temperatures with small deviations (+4.4 K, -3.5 K) compared with measured temperatures. The verified and modularised thermal networks of the equipment provide an efficient and economical way of setting up heating networks of low-voltage switchgear and controlgear assemblies.:1 Einleitung 1 2 Problemstellung 2 2.1 Stand der Technik / Ausgangssituation 2 2.2 Normen zur Erwärmung 3 2.3 Aufgabenstellung 5 2.4 Aufbau der Versuchsanlage 7 3 Grundlagen der Erwärmungsberechnung 11 3.1 Erzeugte Wärmeleistungen 11 3.2 Wärmeübertragung 17 3.3 Erwärmungsberechnung mit Wärmenetzen 39 4 Grundlagen zur Stromverdrängung 43 4.1 Stromdichteverteilung im Vollzylinder 43 4.2 Stromverdrängung und der Leistungsfaktor k 48 5 Untersuchungen zu den Wärmequellen 54 5.1 Stromwärmeverluste in den elektrischen Leiter von Sammel- und Feldverteilerschienen 57 5.2 Stromwärmeverluste in Schaltgeräten und zugehörigen Betriebsmitteln 90 5.3 Wirbelstrom- und Hystereseverluste in Metallteilen 105 6 Wärmenetze für die Betriebsmittel einer Niederspannungs- Schaltgerätekombination 126 7 Wärmenetz einer Niederspannungs-Schaltgerätekombination 148 8 Zusammenfassung und Ausblick 155 9 Literaturverzeichnis 158 10 Anhang 163
6

Kontakt- und Langzeitverhalten von stromführenden Schraubenverbindungen mit vernickelten und versilberten Leitern aus Aluminiumwerkstoffen

Fuhrmann, Torsten 03 June 2020 (has links)
Schraubenverbindungen sind eine technische Lösung um Stromschienen aus Aluminium mechanisch und elektrisch zu verbinden. Als stationäre Verbindungen sollen sie für eine Zeit von 30 Jahren und mehr den Betriebsstrom übertragen ohne dabei die genormten, zulässigen Grenztemperaturen zu überschreiten. Die Grundvoraussetzung für eine langzeitstabile, stromführende Verbindung ist ein geringer Anfangswert des Verbindungswiderstands nach der Montage. Dieser ist abhängig von der Kontaktkraft und kann für jede Kombination aus Fügeelementen, Werkstoffen und Topografie der Leiteroberflächen an der konstruierten Verbindung experimentell bestimmt werden. Allgemeingültige Modellrechnungen zum elektrischen Kontaktverhalten einer Schraubenverbindung mit Stromschienen waren bisher nicht möglich. In dieser Arbeit wurde durch numerische Berechnungen und experimentelle Untersuchungen eine Korrelation zwischen dem mechanischen und dem elektrischen Kontaktverhalten einer Schraubenverbindung mit Stromschienen hergestellt. Es wurde die inhomogene mechanische Spannungsverteilung auf der Kontaktfläche zwischen den Stromschienen bestimmt und damit ein Modell zum Berechnen des elektrischen Kontakt- und Verbindungswiderstands mit der Berücksichtigung des tatsächlich stromdurchflossenen Leitermaterials aufgestellt. Der Verbindungswiderstand kann sich, abhängig von der Temperatur und Zeit, durch verschiedene Alterungsmechanismen erhöhen. Das Altern durch den Abbau der Kontaktkraft wurde an Schraubenverbindungen mit unbeschichteten Stromschienen aus verschiedenen Aluminiumwerkstoffen untersucht. Es wurde die Kontaktkraft und der Verbindungswiderstand über einen Zeitraum von bis zu vier Jahren bei Temperaturen zwischen (80 … 160) °C bestimmt. Diese Untersuchungen wurden für ein System mit und ein System ohne federnde Fügeelemente durchgeführt, sowie die Kontaktkraft für eine Betriebszeit von 30 Jahren berechnet. Im Vergleich mit der experimentell bestimmten Mindestkontaktkraft und dem Werkstoffverhalten wurde eine Prognose zur Langzeitstabilität der stromführenden Verbindungen für eine konstante Belastung im Betrieb gegeben. Weiterhin wurden mit dem zeit und temperaturabhängigen Verhalten der Aluminiumwerkstoffe zulässige Grenz-temperaturen ermittelt, bei denen keine Entfestigung während der Betriebszeit auftritt. Für Schraubenverbindungen mit vernickelten und versilberten Stromschienen wird eine identische, dauerhaft zulässige Grenztemperatur von 115 °C in der Norm angegeben [N1]. Die elektrischen und mechanischen Eigenschaften der metallischen Überzüge, sowie die Reaktivität mit der Umgebung sind aber sehr unterschiedlich. An stromführenden und stromlos im Wärmeschrank bei 115 °C und 140 °C gelagerten Verbindungen wurde der Verbindungs-widerstand bis zu einer Zeit nach t = 25.000 h bestimmt. Es wurde das elektrische Kontakt- und Langzeitverhalten von Schraubenverbindungen mit zwei beschichteten Stromschienen, sowie einer beschichteten und einer unbeschichteten Stromschiene aus Aluminium untersucht und bewertet. Abhängig vom Schichtaufbau des metallischen Überzugs mit verschiedenen Zwischenschichten und Schichtdicken wurde der Einfluss der Interdiffusion mit der Bildung intermetallischer Phasen (IMP) auf das Langzeitverhalten der Verbindungen untersucht.:1 Einleitung 2 Werkstoffe für elektrische Leiter und metallische Überzüge 2.1 Aluminiumwerkstoffe für die Elektrotechnik 2.1.1 Einfluss der Mikrostruktur 2.1.2 Herstellen, Umformen und Nachbehandeln 2.1.3 Ausscheidungshärten von Al-Mg-Si-Legierungen 2.2 Metallische Überzüge aus Silber und Nickel 2.2.1 Elektrolytisches Beschichten 2.2.2 Autokatalytisches Beschichten 3 Grundlagen zu stromdurchflossenen Flächenkontakten 3.1 Kontaktverhalten in einer Schraubenverbindung mit Stromschienen 3.2 Gütefaktor zum Beurteilen der Qualität der stromführenden Verbindung 4 Alterung stromführender Verbindungen 4.1 Chemische Reaktionen 4.2 Kraftabbau in einer Schraubenverbindung 4.2.1 Elastische und plastische Verformung 4.2.2 Zeit- und temperaturabhängige Werkstoffentfestigung 4.2.3 Viskoplastische Verformung abhängig von der Temperatur 4.2.4 Berechnen der Kontaktkraft 4.3 Interdiffusion zwischen unterschiedlichen metallischen Werkstoffen 4.3.1 Metallische Überzüge aus Silber 4.3.2 Metallische Überzüge aus Nickel als Zwischen- und Deckschicht 5 Aufgabenstellung 6 Untersuchungen zu beschichteten und unbeschichteten elektrischen Flächenkontakten 6.1 Experimentell ermittelte Eigenschaften der Aluminiumwerkstoffe 6.2 Geometrie der untersuchten Stromschienen und Fügeelemente der Schraubenverbindungen 6.2.1 Schraubenverbindung ohne federnde Fügeelemente (OFF) 6.2.2 Schraubenverbindung mit federnden Fügeelementen (MFF) [79] 6.3 Vorbehandlung, Montage und Inbetriebnahme der Langzeitversuche 6.4 Erzeugen und Messen der Kontaktkraft im Langzeitversuch 7 Elektrisches Kontakt- und Langzeitverhalten von Schraubenverbindungen mit unbeschichteten Stromschienen 7.1 Untersuchungen zum Kontaktverhalten 7.1.1 Mechanisches Berechnungsmodell 7.1.2 Elektrisches Berechnungsmodell 7.2 Untersuchungen zum Langzeitverhalten 7.2.1 Zeit- und temperaturabhängige Härte des Aluminiums 7.2.2 Zeit- und temperaturabhängige elektrische Leitfähigkeit des Aluminiums 7.2.3 Versuchsergebnisse zum Langzeitverhalten 7.2.4 Abschätzen der Restkontaktkraft 7.2.5 Zusammenhang zwischen der Kraft und dem Widerstand der Verbindung 7.3 Zusammenfassung 8 Elektrisches Kontakt- und Langzeitverhalten von Schraubenverbindungen mit vernickelten und versilberten Stromschienen 8.1 Untersuchungen zum Kontaktverhalten 8.2 Langzeitverhalten von Schraubenverbindungen mit zwei identisch beschichteten Stromschienen 8.2.1 Zeit- und temperaturabhängige Härte der metallischen Überzugwerkstoffe 8.2.2 Zeit- und temperaturabhängige elektrische Leitfähigkeit des Ni P (Typ 5) 8.3 Kraftabbau an Schraubenverbindungen mit zwei identisch beschichteten Stromschienen 8.4 Langzeitverhalten von Schraubenverbindungen mit einer beschichteten und einer unbeschichteten Stromschiene 8.5 Mikroskopische Untersuchungen 8.6 Weitere Untersuchungen zur Alterung von Schraubenverbindungen mit zwei vernickelten Stromschienen 8.6.1 Einfluss des Phosphorgehaltes in metallischen Überzügen aus Ni P 8.6.2 Einfluss der Art der thermischen Alterungsprüfung – Dauerlast / Wechsellast 8.7 Zusammenfassung 9 Ausblick Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Anhang / A bolted joint is one technical possibility for mechanically and electrically connecting two busbars made of aluminium. This stationary connection shall carry the operating current for more than 30 years without exceeding the permissible limiting temperature given by international standards. For long-term stable, current-carrying connections a good electrical contact behaviour with a low initial value of the joint resistance is required after bolting. The joint resistance depends on contact force and can be measured at the constructed electrical joint for each combination of joining elements, conductor materials and pretreatment of conductor surfaces. General calculations for the electrical contact behaviour of current-carrying joints with flat contact surfaces, such as bolted joints with busbars, were not possible until now. In this thesis numerical calculations and experimental investigations were used to establish the relationship between mechanical and electrical contact behaviour of a bolted joint with busbars. In the first step, the inhomogeneous distribution of the mechanical stress was calculated on the contact area between two busbars. In the second step, a calculation model for the joint resistance and the contact resistance was created and verified by experiments. The joint resistance can increase by different ageing mechanisms depending on operating temperature and time. Ageing by the reduction of contact force was investigated on bolted joints with uncoated busbars made of various aluminium alloys. In long-term tests, these joints were loaded with temperatures between 80 °C and 160 °C. The contact forces and joint resistances were determined for up to four years of operation. Bolted joints with spring elements and without spring elements were investigated. Based on the results of these long-term tests, the contact force was calculated for up to 30 years of operation and compared with the experimentally determined minimum contact force of the joint. Together with the temperature and time dependent behaviour of the conductor materials, the long-term stability of the joints was evaluated for the case of constant thermal load during operation. Furthermore, permissible limiting temperatures at which no softening occurs during operation could be determined for various aluminium alloys. An identical limiting temperature of 115 °C is permanently permitted for bolted joints with nickel-coated and silver-coated busbars [N1] but the mechanical and electrical properties of the materials for these metallic coatings are very different. The chemical reactivity of both coatings also differs according to the environment. In long-term tests at current-carrying joints and joints which were aged in ovens at temperatures of (115 and 140) °C, the joint resistances were determined up to an operating time of t = 25.000 hours. Bolted joints with two identical coated busbars and also bolted joints with one coated and one bare busbar made of aluminium were investigated and evaluated. The influence of metallic coatings with different intermediate layers and layer thicknesses on the contact and long-term behaviour of the joints were examined. Due to interdiffusion between different materials, intermetallic compounds (IMC) can be formed. The ageing of bolted joints with coated busbars caused by the formation of IMC with poor electrical and mechanical properties compared to pure metals was investigated.:1 Einleitung 2 Werkstoffe für elektrische Leiter und metallische Überzüge 2.1 Aluminiumwerkstoffe für die Elektrotechnik 2.1.1 Einfluss der Mikrostruktur 2.1.2 Herstellen, Umformen und Nachbehandeln 2.1.3 Ausscheidungshärten von Al-Mg-Si-Legierungen 2.2 Metallische Überzüge aus Silber und Nickel 2.2.1 Elektrolytisches Beschichten 2.2.2 Autokatalytisches Beschichten 3 Grundlagen zu stromdurchflossenen Flächenkontakten 3.1 Kontaktverhalten in einer Schraubenverbindung mit Stromschienen 3.2 Gütefaktor zum Beurteilen der Qualität der stromführenden Verbindung 4 Alterung stromführender Verbindungen 4.1 Chemische Reaktionen 4.2 Kraftabbau in einer Schraubenverbindung 4.2.1 Elastische und plastische Verformung 4.2.2 Zeit- und temperaturabhängige Werkstoffentfestigung 4.2.3 Viskoplastische Verformung abhängig von der Temperatur 4.2.4 Berechnen der Kontaktkraft 4.3 Interdiffusion zwischen unterschiedlichen metallischen Werkstoffen 4.3.1 Metallische Überzüge aus Silber 4.3.2 Metallische Überzüge aus Nickel als Zwischen- und Deckschicht 5 Aufgabenstellung 6 Untersuchungen zu beschichteten und unbeschichteten elektrischen Flächenkontakten 6.1 Experimentell ermittelte Eigenschaften der Aluminiumwerkstoffe 6.2 Geometrie der untersuchten Stromschienen und Fügeelemente der Schraubenverbindungen 6.2.1 Schraubenverbindung ohne federnde Fügeelemente (OFF) 6.2.2 Schraubenverbindung mit federnden Fügeelementen (MFF) [79] 6.3 Vorbehandlung, Montage und Inbetriebnahme der Langzeitversuche 6.4 Erzeugen und Messen der Kontaktkraft im Langzeitversuch 7 Elektrisches Kontakt- und Langzeitverhalten von Schraubenverbindungen mit unbeschichteten Stromschienen 7.1 Untersuchungen zum Kontaktverhalten 7.1.1 Mechanisches Berechnungsmodell 7.1.2 Elektrisches Berechnungsmodell 7.2 Untersuchungen zum Langzeitverhalten 7.2.1 Zeit- und temperaturabhängige Härte des Aluminiums 7.2.2 Zeit- und temperaturabhängige elektrische Leitfähigkeit des Aluminiums 7.2.3 Versuchsergebnisse zum Langzeitverhalten 7.2.4 Abschätzen der Restkontaktkraft 7.2.5 Zusammenhang zwischen der Kraft und dem Widerstand der Verbindung 7.3 Zusammenfassung 8 Elektrisches Kontakt- und Langzeitverhalten von Schraubenverbindungen mit vernickelten und versilberten Stromschienen 8.1 Untersuchungen zum Kontaktverhalten 8.2 Langzeitverhalten von Schraubenverbindungen mit zwei identisch beschichteten Stromschienen 8.2.1 Zeit- und temperaturabhängige Härte der metallischen Überzugwerkstoffe 8.2.2 Zeit- und temperaturabhängige elektrische Leitfähigkeit des Ni P (Typ 5) 8.3 Kraftabbau an Schraubenverbindungen mit zwei identisch beschichteten Stromschienen 8.4 Langzeitverhalten von Schraubenverbindungen mit einer beschichteten und einer unbeschichteten Stromschiene 8.5 Mikroskopische Untersuchungen 8.6 Weitere Untersuchungen zur Alterung von Schraubenverbindungen mit zwei vernickelten Stromschienen 8.6.1 Einfluss des Phosphorgehaltes in metallischen Überzügen aus Ni P 8.6.2 Einfluss der Art der thermischen Alterungsprüfung – Dauerlast / Wechsellast 8.7 Zusammenfassung 9 Ausblick Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Anhang

Page generated in 0.0823 seconds