Spelling suggestions: "subject:"butterfly wind"" "subject:"butterfly win""
1 |
Genetics of Sexually Dimorphic Development of Butterfly Wing PatternsRodriguez Caro, Luis Fernando 14 December 2018 (has links)
Butterfly wing color patterns result from the arrangement of monochromatic scales containing chemical pigments and a delicate architecture that can cause interference or diffraction of light, generating iridescent colors. The latter mechanism is known as structural coloration and, despite its ecological importance, little is known about the molecular mechanisms underlying the development of this trait. The Southern Dogface butterfly, Zerene cesonia, exhibits sexually dimorphic development of ultraviolet wing reflectance. Males possess a UV-reflective patch on the forewing that results from nano-structures on the wing scales, which are absent in females. This dimorphism offers an excellent opportunity to explore the genetic mechanisms involved in pattern formation and cyto-structural variation. We used RNA-seq data from imaginal wing discs through late larval and pupal development to identify genes involved in the regulation of color pattern and scale structure formation. We identified candidate genes for the regulation of wing color pre-patterning and sexually-dimorphic development of wing scales. Our results provide a genomic resource for the identification and characterization of genes that participate in the regulation of wing development in pierid butterflies.
|
2 |
Bioinspired Surface for Low Drag, Self-Cleaning, and Antifouling: Shark Skin, Butterfly and Rice Leaf EffectsBixler, Greg January 2013 (has links)
No description available.
|
3 |
Colour pattern evolution and development in Vanessa butterfliesAbbasi, Roohollah 26 August 2015 (has links)
The evolution and development of eyespot and non-eyespot colour pattern elements was studied in Vanessa butterflies using a phylogenetic approach. A Bayesian phylogeny of the genus Vanessa was reconstructed from 7750 DNA base pairs from 10 genes. Twenty-four non-eyespot and forty-four eyespot color pattern elements from the Nymphalid ground plan were defined and studied and their evolutionary history was traced on the Vanessa phylogeny. Ancestral character states were predicted and the direction of evolutionary changes was inferred for all characters. Five serially arranged eyespots were predicted for the ancestral Vanessa on all wing surfaces. Homologous eyespot and non-eyespot characters on the surfaces of the forewing were more similar than those on the surfaces of the hindwing. Homologous eyespot characters on the dorsal surfaces of fore and hindwings show more similarities than the ventral surfaces, in contrast to what was found for non-eyespot characters. Independent Contrast analysis was also used to study correlations between eyespot characters. Independent Contrast analysis revealed significant correlations between eyespots 2 and 5 and eyespots 3 and 4 on all wing surfaces. This consistency among highly variable eyespot characters suggested a structural hypothesis: the existence of a Far-Posterior (F-P) compartment boundary and organizer could be responsible for the observed correlations. This hypothesis was tested in several ways. First, examination of wing patterns across species from all families of butterflies revealed correspondence between wing cells 1 and 4 and between cells 2 and 3. Second, evaluation of spontaneous mitotic clones in butterflies and moths reveals a peak abundance of clonal boundaries along the vein dividing wing cells 2 and 3. Finally, experimentally generated FLP/FRT mitotic wing clones produced in Drosophila, reveal a clonal boundary posterior to the L5 wing vein, which is homologous to the vein dividing wing cells 3 and 4 in butterflies. Collectively, this suggests the existence of an additional compartment boundary associated with an organizer in wing cell 3 responsible for patterning the posterior portion of insect wings. A model is proposed that predicts that the wing developmental compartment boundaries produce unique combinations of gene expression for each wing sector, permitting eyespot individuation. / February 2016
|
4 |
A functional genomic investigation of an alternative life history strategy : The Alba polymorphism in Colias croceusWoronik, Alyssa January 2017 (has links)
Life history traits affect the timing and pattern of maturation, reproduction, and survival during an organism’s lifecycle and are the major components influencing Darwinian fitness. Co-evolved patterns of these traits are known as life history strategies (LHS) and variation occurs between individuals, populations, and species. The polymorphisms underlying LHS are important targets of natural selection, yet the underlying genes and physiological mechanisms remain largely unknown. Mapping the genetic basis of a LHS and subsequently unraveling the associated physiological mechanisms is a challenging task, as complex phenotypes are often polygenic. However, in several systems discrete LHS are maintained within the population and are inherited as a single locus with pleiotropic effects. These systems provide a promising starting point for investigation into LHS mechanisms and this thesis focuses on one such strategy - the Alba polymorphism in Colias butterflies. Alba is inherited as a single autosomal locus, expressed only in females, and simultaneously affects development rate, reproductive potential, and wing color. Alba females are white, while the alternative morph is yellow/orange. About 28 of 90 species exhibit polymorphic females, though whether the Alba mechanism and associated tradeoffs are conserved across the genus remains to be determined. In this thesis I primarily focus on the species Colias croceus and integrate results from lipidomics, transcriptomics, microscopy, and genomics to gain insights to the proximate mechanisms underlying Alba and Alba’s evolution within the genus. Lipidomics confirm that, consistent with findings in New World species, C. croceus Alba females have larger abdominal lipid stores than orange, an advantage which is temperature dependent and arises primarily due to mobilized lipids. Gene expression data suggests differences in resource allocation, with Alba females investing in reproduction rather than wing color, consistent with previous findings in other Colias species. Additionally, I identify a morphological basis for Alba’s white wing color. Alba females from C. croceus, an Old World species, and Colias eurytheme, a New World species both exhibit a significant reduction in pigment granules, the structures within the wing scale that contain pigment. This is a trait that seems to be unique to Colias as other white Pierid butterflies have an abundance of pigment granules, similar to orange females. I also map the genetic basis of Alba to a single genomic region containing an Alba specific, Jockey-like transposable element insertion. Interestingly this transposable element is located downstream of BarH-1, a gene known to affect pigment granule formation in Drosophila. Finally, I construct a phylogeny using a global distribution of 20 Colias species to facilitate investigations of Alba’s evolution within the genus. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript. Paper 4: Manuscript.</p>
|
Page generated in 0.0837 seconds