• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Critical Role of c-IAP-2 in Mediating Mechanisms of Resistance to HIV-Vpr-induced Apoptosis in Human Monocytic Cells

Saxena, Mansi 07 June 2013 (has links)
Monocytic cells survive HIV replication and consequent cytopathic effects because of their decreased sensitivity to HIV-induced apoptosis. However, the mechanism underlying this resistance to apoptosis remains poorly understood. I hypothesized that exposure to microbial products, translocated from the gut, may confer anti-apoptotic properties in human monocytic cells through interaction with their corresponding Toll-like receptors (TLRs). Using HIV-Vpr(52-96) peptide as a model apoptosis-inducing agent, I demonstrated that unlike monocyte-derived macrophages, undifferentiated primary human monocytes and pro-monocytic THP-1 cells are highly susceptible to Vpr(52-96)-induced apoptosis. Interestingly, monocytes and THP-1 cells stimulated with TLR-9 agonists, CpG and E.coli DNA, induced almost complete resistance to Vpr(52-96)-induced apoptosis albiet via a TLR-9 independent signaling pathway. Moreover, CpG and E.coli DNA selectively induced the anti- apoptotic Inhibitor of Apoptosis Protein-2 (c-IAP-2) and inhibition of the c-IAP-2 gene by either specific siRNAs or synthetic second mitochondrial activator of caspases (Smac) mimetic reversed CpG-induced resistance against Vpr(52-96)-mediated apoptosis. I demonstrated that c-IAP-2 was regulated by the c-Jun N terminal kinase (JNK) and the calcium signaling pathway in particular the calmodulin-dependent protein kinase-II (CaMK-II). Furthermore, inhibition of JNK and the calcium signaling including CaMK-II by either pharmacological inhibitors or their specific siRNAs reversed CpG-induced protection against Vpr(52-96)-mediated apoptosis. I also showed that CpG-induced JNK phosphorylation through activation of calcium signaling pathway.
2

Critical Role of c-IAP-2 in Mediating Mechanisms of Resistance to HIV-Vpr-induced Apoptosis in Human Monocytic Cells

Saxena, Mansi January 2013 (has links)
Monocytic cells survive HIV replication and consequent cytopathic effects because of their decreased sensitivity to HIV-induced apoptosis. However, the mechanism underlying this resistance to apoptosis remains poorly understood. I hypothesized that exposure to microbial products, translocated from the gut, may confer anti-apoptotic properties in human monocytic cells through interaction with their corresponding Toll-like receptors (TLRs). Using HIV-Vpr(52-96) peptide as a model apoptosis-inducing agent, I demonstrated that unlike monocyte-derived macrophages, undifferentiated primary human monocytes and pro-monocytic THP-1 cells are highly susceptible to Vpr(52-96)-induced apoptosis. Interestingly, monocytes and THP-1 cells stimulated with TLR-9 agonists, CpG and E.coli DNA, induced almost complete resistance to Vpr(52-96)-induced apoptosis albiet via a TLR-9 independent signaling pathway. Moreover, CpG and E.coli DNA selectively induced the anti- apoptotic Inhibitor of Apoptosis Protein-2 (c-IAP-2) and inhibition of the c-IAP-2 gene by either specific siRNAs or synthetic second mitochondrial activator of caspases (Smac) mimetic reversed CpG-induced resistance against Vpr(52-96)-mediated apoptosis. I demonstrated that c-IAP-2 was regulated by the c-Jun N terminal kinase (JNK) and the calcium signaling pathway in particular the calmodulin-dependent protein kinase-II (CaMK-II). Furthermore, inhibition of JNK and the calcium signaling including CaMK-II by either pharmacological inhibitors or their specific siRNAs reversed CpG-induced protection against Vpr(52-96)-mediated apoptosis. I also showed that CpG-induced JNK phosphorylation through activation of calcium signaling pathway.

Page generated in 0.0226 seconds