• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Β-Adrenergic Receptor-Stimulated Apoptosis in Cardiac Myocytes Is Mediated by Reactive Oxygen Species/C-Jun NH<sub>2</sub>-Terminal Kinase-Dependent Activation of the Mitochondrial Pathway

Remondino, Andrea, Kwon, Susan H., Communal, Catherine, Pimentel, David R., Sawyer, Douglas B., Singh, Krishna, Colucci, Wilson S. 07 February 2003 (has links)
Stimulation of β-adrenergic receptors (βARs) causes apoptosis in adult rat ventricular myocytes (ARVMs). The role of reactive oxygen species (ROS) in mediating βAR-stimulated apoptosis is not known. Stimulation of βARs with norepinephrine (10 μmol/L) in the presence of prazosin (100 nmol/L) for 24 hours increased the number of apoptotic myocytes as determined by TUNEL staining by 3.6-fold. The superoxide dismutase/catalase mimetics Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (MnTMPyP; 10 μmol/L) and Euk-134 decreased βAR-stimulated apoptosis by 89±6% and 76±10%, respectively. Infection with an adenovirus expressing catalase decreased βAR-stimulated apoptosis by 82±15%. The mitochondrial permeability transition pore inhibitor bongkrekic acid (50 μmol/L) decreased βAR-stimulated apoptosis by 76±8%, and the caspase inhibitor zVAD-fmk (25 μmol/L) decreased βAR-stimulated apoptosis by 62±11%. βAR-stimulated cytochrome c release was inhibited by MnTMPyP. βAR stimulation caused c-Jun NH2-terminal kinase (JNK) activation, which was abolished by MnTMPyP. Transfection with an adenovirus expressing dominant-negative JNK inhibited βAR-stimulated apoptosis by 81±12%, and the JNK inhibitor SP600125 inhibited both βAR-stimulated apoptosis and cytochrome c release. Thus, βAR-stimulated apoptosis in ARVMs involves ROS/JNK-dependent activation of the mitochondrial death pathway.
2

Β-Adrenergic Receptor-Stimulated Apoptosis in Adult Cardiac Myocytes Involves MMP-2-Mediated Disruption of β<sub>1</sub> Integrin Signaling and Mitochondrial Pathway

Menon, Bindu, Singh, Mahipal, Ross, Robert S., Johnson, Jennifer N., Singh, Krishna 01 January 2006 (has links)
Stimulation of β-adrenergic receptors (β-AR) induces apoptosis in adult rat ventricular myocytes (ARVMs) via the JNK-dependent activation of mitochondrial death pathway. Recently, we have shown that inhibition of matrix metalloproteinase-2 (MMP-2) inhibits β-AR-stimulated apoptosis and that the apoptotic effects of MMP-2 are possibly mediated via its interaction with β1 integrins. Herein we tested the hypothesis that MMP-2 impairs β1 integrin-mediated survival signals, such as activation of focal adhesion kinase (FAK), and activates the JNK-dependent mitochondrial death pathway. Inhibition of MMP-2 using SB3CT, a selective gelatinase inhibitor, significantly increased FAK phosphorylation (Tyr-397 and Tyr-576). TIMP-2, tissue inhibitor of MMP-2, produced a similar increase in FAK phosphorylation, whereas treatment of ARVMs with purified active MMP-2 significantly inhibited FAK phosphorylation. Inhibition of MMP-2 using SB3CT inhibited β-AR-stimulated activation of JNKs and levels of cytosolic cytochrome c. Treatment of ARVMs with purified MMP-2 increased cytosolic cytochrome c release. Furthermore, inhibition of MMP-2 using SB3CT and TIMP-2 attenuated β-AR-stimulated decreases in mitochondrial membrane potential. Overexpression of β1 integrins using adenoviruses expressing the human β1A-integrin decreased β-AR-stimulated cytochrome c release and apoptosis. Overexpression of β1 integrins also inhibited apoptosis induced by purified active MMP-2. These data suggest that MMP-2 interferes with the β1 integrin survival signals and activates JNK-dependent mitochondrial death pathway leading to apoptosis.

Page generated in 0.0822 seconds