• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The structure and function of the human transcription factor GATA-6

Davies, Andrew James January 2000 (has links)
No description available.
2

Gene expression in ripening melon (Cucumis melo L.)

Aggelis, Alexandros January 1996 (has links)
No description available.
3

GENETIC DIVERSITY AND SYMPTOM SEVERITY DETERMINANTS OF BEAN POD MOTTLE VIRUS

Gu, Hongcang 01 January 2004 (has links)
Bean pod mottle virus (BPMV), a member of the genus Comovirus in the family Comoviridae, is widespread in the major soybean-growing areas in the United States. Soybean yield losses of 10-40% have been reported as a consequence of BPMV infection. The complete nucleotide sequences of two strains, K-Ha1 and K-Ho1, were determined. Field isolates of BPMV were classified into two distinct subgroups (I and II) based on slot blot hybridization and sequence analyses. Full-length cDNA clones from which infectious transcripts can be produced were constructed for strains K-G7, K-Ho1 and K-Ha1. Whereas strains K-Ha1 and K-G7 induced mild or moderate symptoms in infected soybean plants, strain K-Ho1 produced very severe symptoms. Symptom severity was mapped to RNA1. Chimeric RNA1 constructs were generated by exchanging full or partial coding regions of the five RNA1-encoded mature proteins between the full-length cDNA clones of the three RNA1s and the resultant transcripts were inoculated onto soybean. The results showed that the coding regions of the protease co-factor (Co-pro) and the putative helicase (Hel) are determinants of symptom severity. Although symptom severity correlated well with accumulation of viral RNA, neither the Co-pro nor Hel protein could be demonstrated as a suppressor of RNA silencing. Furthermore, separate expression of the Co-pro or Hel proteins from a PVX vector induced necrosis on the inoculated leaves of Nicotiana benthamiana. Characterization of BPMV K-Ho1 indicated that it is a diploid reassortant, containing two distinct types of RNA1s and one type of RNA2. Examination of field isolates from various locations in the United States and Canada revealed that diploid reassortants are of frequent occurrence in natural populations of BPMV. The vary severe symptoms induced by BPMV K-Ho1 can be mimicked by inoculation of plants with a mixture of RNA1 transcripts from two distinct strain subgroups and RNA2 transcript from either subgroup. Plants inoculated with a mixture of transcripts containing two types of RNA1 from the same strain subgroup did not produce very severe symptoms. These are due to interactions between two distinct types of RNA1s. At present, no soybean cultivars with resistance to BPMV are commercially available. Therefore, the feasibility of cross protection as an alternative disease management strategy was studied. Two mild strains of BPMV (K-Da1 and K-Ha1), belonging to subgroup II, were tested for their ability to protect infected plants against a severe strain (K-Ho1). Inoculation of the soybean cultivar Essex on the primary leaves with either of the two mild strains conferred complete protection against challenge inoculation with the severe strain K-Ho1, regardless of the timing of challenge inoculation. Cross-protection was evident regardless of whether virions or BPMV-RNA were used as inocula. Cross protection was independent of the soybean cultivar used and method of virus inoculation, sap-inoculation or by the bean leaf beetle, vector of BPMV. Protection was complete and durable.
4

Structure and Activity of Circular Plant Proteins : Cytotoxic Effects of Viola Cyclotides

Herrmann, Anders January 2007 (has links)
Cyclotides are a family of small and macrocyclic proteins that have been found in Violacaee and Rubiaceae plant species. These proteins contain a cystine knot: two disulfides bonds together with their connecting peptide backbone form an embedded ring which is penetrated by a third disulfide bond. The cyclotides have been attributed a wide range of biological activities, which in combination with their chemical stability and structural plasticity have made them attractive tools for pharmaceutical applications. The sequence of eleven novel cyclotides, vibi A-K, from Viola biflora was determined by the use of both chemical (extraction and characterization) and molecular biology (cDNA analyses) approaches. A clear discrepancy in the results from the two methods was observed. Additionally, one novel cyclotide, vodo O, was isolated from Viola odorata. To correlate cytotoxic potency to sequence, vodo O and vibi D, E, G and H were tested on a lymphoma cell line. Based on the presence or absence of a cis-Pro bond, the cyclotides are divided into the Möbius and bracelet subfamilies. The bracelet proteins have a higher net charge and are more cytotoxic potent than the Möbius ones. To explore these differences, charged and hydrophobic residues in varv A (Möbius) and cycloviolacin O2 (bracelet) were chemically modified and tested for their cytotoxicity. The net-charge of the two proteins was not important for the potency. The Glu residue in cycloviolacin O2 was crucial, while this residue was of minor importance in varv A. Oxidation of the single Trp residue declined the potency significantly in both proteins. To evaluate how the surface properties correlate to the degree of cytotoxic potency, models of all cyclotides hitherto tested were constructed by homology modelling. Calculations showed that the membrane orientation of varv A and cycloviolacin O2 differed significantly, which might explain their difference in potency

Page generated in 0.0384 seconds